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Purpose

When one partitions a set E the frontiers between classes are not material-
ized ...But some operations need them.

e How to combine interiors and frontiers in a unique representation?

e Is that possible with any partition of E7

or 1s there some condition for the classes?”

... Here are the problems we try to solve.



Continuous or Digital Space

One usually separates the questions specific to R™ or to Z".

But the notions involved in our problem are prior to this distinction...It is
wiser not to specify it too soon, and to work on some space FE.

Moreover, we would like to find bridges between R"™ and Z".



Structure of P(E)

The inclusion relation
XCY & {reX} ={zreY} X,Y e P(E)
is an ordering, i.e.
e X CX
e XCYandYCX = Y=X
e XCYandYC/Z = XCZ



Structure of P(E)

The inclusion relation
XCY & {reX} ={reY} X, Y e P(E)
is an ordering, i.e.
e X CX
e XCYandYCX = Y=X

e XCYandYC/Z = XC/Z

This ordering induces a complete lattice where any family {X; j € J}
admits

e smaller upper bound UX;

e largest lower bound NX;



Open and closed sets of P(E)

Povide a topology or a metric with £ and consider B € P(FE)

Set B = B is closed when it contains its fontiers :

Set B = B° is open when it does not

The complement of the interior B = B° is the adherence of the comple-
ment of B

In case of a metric £, B° open ~ B = U{all open discs C B}
(Example in Z? with unit disc the 3 x 3 square)



Open and closed sets of P(E)

Both blue and red sets are regular open and regular closed for the topology
of the square metric



Regular open sets

An open set B is regular, or R-open, when B = (B)°

R stands for the family of the regular sets B of P(F).



Regular open sets

An open set B is regular, or R-open, when B = (B)°

R stands for the family of the regular sets B of P(F).

R is a complete lattice for the inclusion ordering, where the supremum and
the infimum are given by

\/Bq; — (UB@')O ] N\ Bz — (ﬂBZ’)O.
and the unique complement of B is

(compB)°



Regular open sets

Denote by S = (B)° the R-open transform of the open set B € G(FE).
The operation B — S = (B)° is an algebraic closing on the open sets of
E, and the image of G is R.

This closing means that S is the smallest R-open set that contains B.

For example, if we take Fig.a for B, then we obtain Fig.b for transform 5.

N
S



Regularisation

Taken individually, both sets are open and regular for the square metric
but their union, still open, is no longer regular.



Regularisation

O

We regularize by the algebraic closing B — S = (B)
This closing means that S is the smallest R-open set that contains B.
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Tessellation

A tessellation 7 of F is a family of disjoint open classes {B;,i € I},

whose union UB; plus the union of all frontiers Fr(B;, B;),i # j partitions
space F.



Tessellation an regular sets

Theorem: The family 7 = {B;,7 € I} is a tessellation if and only if all B;
are R-open.

The theorem reminds us of Jordan’s one, though
e it is true in any topological space,
e it does not focus on the frontiers, but on the classes.

e connectivity is not involved, whereas it is essential in Jordan’s one

In R? every Jordan curve induces a tesselation , but a tesselation into two
open classes, even connected, can have a frontier which is not a Jordan curve.
Here is a digital contour which separates R-open sets and which is thick:



Hierarchies of tessellations

The tessellations met in image processing are often associated with hier-
archies, i.e. are elements of totally ordered closed families.

The classes {s;} of the minimal tessellation 7y are called ”the leaves”, and
are supposed in locally finite number.

These leaves are indivisible R-open sets, i.e. each class of a larger tessela-
tion contains one leave at least and is disjoint from those that it does not
contain.

The set F itself, considered as a class (and which is R-open), ends the
hierarchy.



Hierarchies of tessellations

In a hierarchy, the classes of a tessellation 7 do not reduce to union of their
leaves: the portions of frontiers between adjacent leaves would belong to no
classe

We must find out a law of composition

Let us partition the totality of the leaves into sub-sets
Bj = U{Sj,j c J}

Then the unique tessellation which keeps disjoints the B; clusters has for
classes the R-open sets S; = (B;)°.



Hierarchies of tessellations

Theorem: The set 7 of all tessellations 7 > 7y of E forms a complete
lattice for the ordering of the regular sets.

e Its universal elements are 75 and FE.

e The infimum of family {7,,p € P, 7, > 79} is the tesselation whose class
at point z is the infimum, in R, of the classes of the 7, at point z,

e and the supremum is the smallest tessellation whose classes are suprema
of the classes of the 7, in R.



The connectivity trouble

Up to now, no condition on connectivity was introduced.

Hierarchies of tessellations do not need it. But on the other hand, they do
not preserve it:
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Connected sets will merge into connected sets iff the ambiguous configura-
tions do not exist, i.e. iff the adherences of the classes never intersect by a point
(in 2-D) or a segment (in 3-D).
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Reminder on Khalimsky topology

Associate:

e the open interval |m-(1/2),m’+(1/2)[ with every pair m=m’ of odd inte-
gers, and

e the closed interval [n-(1/2),n’4+(1/2)] with every pair n=n’of even integers.

The unions of open (resp. closed) intervals generate a non separated topol-
ogy.



Reminder on Khalimsky topology

Associate:

e the open interval |m-(1/2),m’+(1/2)[ with every pair m=m’ of odd inte-
gers, and

e the closed interval [n-(1/2),n’+(1/2)] with every pair n=n’of even integers.

The unions of open (resp. closed) intervals generate a non separated topol-
ogy.

The passage to R™ is obtained by product topology of n Khalimsky lines,
where

e The n-cubes whose all coordinates of the centers are odd are open, those
with all coordinates are even are closed;

e the others cubes are "mixed”.



Khalimsky Rules

%

set interior adherence Smallest open upper bound



Rovalevsky cells

a b C d

In R? the Kovalevsky cells display Khalimsky topology. The Figure shows
an example with (a) eight open elementary cells, (b) one elementary close cell
(c) two R-open sets, and (d) their frontier.

This structure is akin to simplicial simplexes.



Doubling Z°

Interpret the points of a set X C Z2, as points of odd coordinates in a
Khalimsky plane K? which contains twice more points by line and twice more
lines.

In the double resolution plane K?, all points of the background have odd
coordinates.

We meet the classical rule of the double sampling : The fine mesh displays
the net of the closed contours which envelop the open classes.




Doubling Z°

For the sake of simplicity we will indicate the previous Kovalevky squares
by big dots, and the additional segments and points by small dots.
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Voronoi polyhedra

Let X C R" be a locally finite set of centres.

e Associate with each centre x € X the so-called Voronoi polyhedron Q(z)
of all points y € R" closer to « than to any other centre.

e (J(x) is convex and open, hence regular, so that the set {Q(z),x € X} of
all Voronoi generates a tessellation of R™.

e In particular in R, when the centres are the points m of odd integer

abscissae m, the corresponding Voronoi is Jm — 3, m + %[ , we find again

2
Khalimsky topology.



Voronoi polygons and polyhedra

Two examples, one from physics (cristallography) the other by simulation



Conditions for Voronoi polyhedra

Impose the following two conditions to the Voronoi polyhedra in R":

1. they must be identical, up to a translation (i.e. reqular grid);

2. the adherences of two adjacent polyhedra always have a common face of
n-1 dimension.

First condition admits

e only two solutions in R?, the square and the hexagon,

e and five in R3, the cube, the hexagonal prism, the truncated octahedron,
and the two elongated and rhombic dodecahedra.



Voronoi Polyhedra and Connectivity

The second condition ensures that connected sets merge into connected sets
(the ambiguous configurations do not exist)

It reduces the possibilities to the only hexagon in 2-D, and only truncated
octahedron in 3-D.

In 2-D the centres describe the triangular grid, in the 3-D the centred cubic
grid

If we are not interested in translation invariance (resp. in preserving con-
nectivity), the first (resp. the second) condition becomes cumbersome,



Hexagonal Voronoi topology in R*

R? is repaired by three axes of coordinates at 120°, and the origin (1,1, 1).

e Take for centres all points of the plane whose coordinates are odd on each
of the three axes.

e The associated Voronoi polygons are the hexagons.

e They generate the hexagonal topology which is no longer Khaminski
excepted in R!



Hexagonal tessellation of R*

The grid is triangular.
The Voronoi polygons are open hexagons.

The other open sets are the unions of these hexagons plus the edges adja-
cent between them,

and the triple points are closed

Q
S~



Doubling Z°

Z? is the triangular grid, and one doubles the pixels along all lines parallel
to the three axes = new space H?.

The points of Z? have three odd coordinates in H?, and are identified to
the open sets of the hexagonal topology of R?, the other points of H? being
closed.

In this new topological space, the R-open version (X)° of X C Z2 is obtained
by adding to X all points comprised between each two open points de X in each
of the three directions.



Comparison with Khaminsky topology
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The small black points indicate the net of the frontiers of the tessellation in
H?.

Two major differences with Khalimsky square grid.

e the frontiers are no longer simple arcs (clusters of pixels may appear),

e no ambiguous diagonal were removed by suppression of the quadruples
points.



Hexagonal emulation
AN
Y
|

Hexagonal grid can be emulated from a square grid.

the shape of the elementary hexagon depends on the parity of its central
line, but this irregularity is rapidly absorbed with the sizes of the objects.

This grid is selt dual, i.e. the connectivity is not changed when one takes
the negative of a set, and there is no longer consistency trouble in the saliency
functions.



Tessellation of R® by truncated octahedra

The Voronoi polyhedra of the centred cubic grid are the truncated octahedra
-or tetrakaidecahedra-

They partition R® in open polyhedra, square and hexagonal faces, triple
edges and quadruple vertices. These elements generate a digital topology.



Tessellation of R® by truncated octahedra

The regularization fills up the internal 1-D or 2-D fissures of zero thickness,
and the background net is a connected union of faces and edges which completely
envelops the classes.

Two adjacent truncated octahedra always share a face (which is not the case
with the cubes)



Tessellation of Z° by truncated octahedra

The unit digital truncated octahedron requires five sections.



Tessellation of Z° by truncated octahedra

® Points of theinitial truncated-octahedron of Z?3

o Points added by half spacing in seven directions (sides and diagonals of the cube)

e Points added to regularize t he truncated-octahedron

For the rule Z> — H? one starts from three horizontal planes of the cubic
grid containing the vertices (n° 1 and 5) and the centre (n° 3) of the unit cube .
The planes n° 2 and 4 are added for generating a centred cubic grid twice finer.

In the three directions of the cube and the four ones of the main diagonals
alternate points of Z3 with those added for forming H?.



Tessellation of Z° by truncated octahedra

Comments

e The structure reminds that of the triangular grid of Z* and the passage
7’ — H-.

e Again the tesselation reduces the cells to the two types of the (open) trun-
cated octahedra, and the (closed) square or hexagonal faces, i.e. something
that can be described in terms of graphs.

e The centred cubic grid can easily be emulated by shifting horizontally the
even planes by the vector (1,1,0)
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Conclusion

e We proposed a method to combine interiors and frontiers in a unique
representation

e The problem was solved by means of regular open sets, and further, tes-
sellations

e In digital cases the passage partition—tessellation involves double resolu-
tion

e The ambiguous configurations of the quare and cubic grids are soved when
they are replaced by hexagonal (Z?) or tetrakaidecahedral grids (Z?).

It was shown in detail how tessellation, Alexandrov topology, and double
resolution interfere. In practice, it is suggested to favour in the triangular grids
in 2-D and the centred-cubic ones in 3-D.
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