G P e G e e B B LI ail ol i e
S I N g g g e
S G - -
P s o s s
o) 4 S T rr e S A G o e I ol
Sty e o Lt s CSECL LSl CL L
coecesesesesese B L gl gy gl gl b o S o eSS
p(."."‘-{"t"‘-"e"r’q"ﬁ‘#r{t""‘_ ‘r r g o o
Cotesesoioseicscicicsc st O UL gl o 2 o
f"rr"'r(r“"r"‘r‘/e’::f',f##fe‘._,v’_,r“__ff«",ff‘,- Py iy
Sl L L [oot 0 e
sl i | i B B
Rt sl AP T T s oS Se S S
LS et o SF I [T [Lo sesdoe
B e T T A e -
S A i i g
" 2 . i oL sl i, R A LR LT B N N el e ‘#:“fr
::: Recursive structure of digital planes, a combinatorial approach j.r';:
"] based on continued fractions r""'.—"
r’ Pl Tl T T T A S A S S S S S o S i .-["!
-:“.,,- :/il
A] Xavier Provencal (oY A P
-y Laboratoire de Mathématiques - gzl\ll\ngRSITE Eﬂ
!rl: Université Savoie Mont-Blanc TAWA MONT BLANC :;_.,"
:’.: F' Unil avoie
TS A SO S DC . A, I
L0606 565654

TS Sl
PO S o
Sl fgaf" 6% "’sggxﬁf"(:
’ﬁ%&eﬁ 'Iﬂw I’t(s'p?syr L5252 j
e S P .f'.f'f'fﬂfi.r"r’r-(‘p-

e T T e S e ettt e el ‘_ B .

@ Recursive Structure of Digital line

@® Construction guided by Euclid

® Generalization to higher dimensions

Outline

N

Definition

Periodic
structure

Christoffel
words

Digital
convexity
test

Part |

Recursive Structure of Digital line

@ Definition

@ Periodic structure

© Christoffel words

@ Digital convexity test

Definition

Digital lines and planes

Definition ([Reveilles 91])
The digital hyperplane P(v, 1) with normal vector v € Z¢, shift
u € R is the subset of Z9 defined by:

P(v,pn) = {X ez’ < (x,v) <p+ HV”l}

Definition

Digital lines and planes

Definition ([Reveilles 91])
The digital hyperplane P(v, 1) with normal vector v € Z¢, shift
u € R is the subset of Z9 defined by:

P(v,pn) = {X ez’ < (x,v) <p+ HV”l}

P((176)>0) — ; il R

0<1x+6y<7 —

A digital line can be coded on two letters.

Definition

Periodic
structure

Christoffel

vords

Digital
convexity

test

Periodic structure of a digital line

,v) is the height of x,
= (_37 1)v
e P(v,0)={x €Z|0< (x,v) <4}.

o (x

(x,v) =4
(x,v) =3
(x,v) =2
(x,v) =1
(x,v) =0

Definition

Periodic
structure

Christoffel

Periodic structure of a digital line

e (x,v) is the height of x,
o v=(-31),
e P(v,0)={x €Z|0< (x,v) <4}.

s

4',“

=
i~

e (x,v)=(y,v) = y — x is a period vector.
e A point of each height from 0 to ||v||; — 1 appear in a period.

Periodic structure of a digital plane
v=(1,23), P(v,0)={x€Z|0< (x,v) <6}

«O> «Fr «=»

«E)»

pPA NG

ital plai

(g4}
.t
BlY
O
(g4}
e)
° v
(D)
- —~
3 >
2 s
O X
= x
= VI
n o
= —
(32}
3 N
- w
(D)
[a N
I
—_
o

P(v,

v (172’3)’

i plii

“©
.t
BlY
O
(g4}
e)
° v
(D)
- —~
3 >
2 s
O X
= x
= VI
n o
= —
(32}
3 N
- w
(D)
[a N
I
—_
o

P(v,

v (172’3)’

.

(g4}
2
BlY
O
(g4}
e)
° v
(D)
- —~
3 >
2 s
O X
= x
= VI
n o
= —
(32}
3 N
- w
(D)
[a N
I
—_
o
>
>
[y
—~
(42}
=
S
\aJ

(y,v) = y — x is a period vector.

* (xv)

e A point of each height from 0 to ||v||1 — 1 appear in a period.

Christoffel
words

Christoffel words

Definition ([Christoffel 1875])

A Christoffel word codes digital path right below a segments between two
consecutive integer points

7 /'35

Christoffel
words

Christoffel words

Definition ([Christoffel 1875])

A Christoffel word codes digital path right below a segments between two
consecutive integer points

4/7

7 /'35

Christoffel
words

Christoffel words

Definition ([Christoffel 1875])

A Christoffel word codes digital path right below a segments between two
consecutive integer points

4/7

7 /'35

Christoffel words

Definition ([Christoffel 1875])
Christoffel

words A Christoffel word codes digital path right below a segments between two
consecutive integer points

w = 00100100101 is the Christoffel word of slope 4/7.

7 /'35

Christoffel words

Definition ([Christoffel 1875])
Christoffel

words A Christoffel word codes digital path right below a segments between two
consecutive integer points

w = 001 - 00100101 is the Christoffel word of slope 4/7.

Theorem ([Borel, Laubie 93])

Any Christoffel word, other than O and 1, can be written in a unique way as
a product of two Christoffel words.

This is called the standard factorization, noted w = (u, v).

Christoffel
words

Christoffel Tree

If (u, v) is a standard factorization, then (u, uv) and (uv, v) are standard
factorizations of Christoffel words.

7N

Christoffel Tree

If (u, v) is a standard factorization, then (u, uv) and (uv, v) are standard
factorizations of Christoffel words.

Christoffel

verds The Christoffel Tree is the tree obtained, starting from (0, 1), using

the rule : (u,v)

/\
(u, uv) (uv, v)
©,1)
(0, 01) (01,1)

(0, 001) (001, 01) (01, 011) (011, 1)

O\ N NN

(0, 0001) (0001, 001) (001,00101) (00101, 01) (01,01011) (01011,011) (011, 0111) (0111, 1)

Christoffel
words

Christoffel Tree

If (u, v) is a standard factorization, then (u, uv) and (uv, v) are standard
factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from (0, 1), using
the rule : (u,v)

/\

(u, uv) (uv, v)

Theorem
Every Christoffel word appears exactly once in the Christoffel Tree.

©0.1)

A

(0, 01) (01,1)

(0, 001) (001, 01) (01, 011) (011, 1)

O\ N NN

(0, 0001) (0001, 001) (001,00101) (00101, 01) (01,01011) (01011,011) (011, 0111) (0111, 1)

Christoffel
words

Christoffel tree

Stern-Brocot Tree

Stern-Brocot tree.

0, 1)

N

(0,01) (01, 1)

/NN

(0,001) (001,01) (01,011) (01, 1)

ANAN

ICE ICE ICE ICN

[ll=]

0
/NN
ANANAN

4 5 5 4 3 3 2 1

ol

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Christoffel
words

Christoffel tree

Stern-Brocot Tree

Stern-Brocot tree.

0, 1)

N

(0,01) (01, 1)

/NN

(0,001) (001,01) (01,011) (01, 1)

ANAN

ICE ICE ICE ICN

[ll=]

TN
/AN TN
AN AN

4 5 5 4 3 3 2 1

ol

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Christoffel
words

Christoffel tree

Stern-Brocot Tree

Stern-Brocot tree.

0

0, 1)

N

(0,01) (01, 1)

/NN

(0, 001) (001, 01) (01, 011), (011, 1)

ANA N

ICE ICE ICE ICN

[ll=]

TN
/AN TN
AN AN

4 5 5 4 3 3 2 1

ol

Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Digital convexity

Definition
Christoffe A digital set D C Z9 is digitally convex if
e e Dig(Conv(D)) = D.
T_ A
P) SN

« r
N P

<_r
|

Definitions and characterizations :

® [Minsky and Papert 1969] ® [Chassery 1983]
® [Sklansky 1970] o

® [Kim, Rosenfeld 1981] o

°

[Hiibler, Klette, Voss 1981] ® [Brlek, Lachaud, P., Reutenauer 2009]

10

5

Nested prefixes

: Corollary
Christoffel

words A Christoffel word that admits w = (u, v) as a proper prefix, has a
prefix of the form : wkv = (w, Wk—lv).

Identifying the longest prefix that is a Christoffel word :

Nested prefixes

: Corollary
Christoffel

words A Christoffel word that admits w = (u, v) as a proper prefix, has a
prefix of the form : wkv = (w, Wk—lv).

Identifying the longest prefix that is a Christoffel word :

Nested prefixes

: Corollary
Christoffel

words A Christoffel word that admits w = (u, v) as a proper prefix, has a
prefix of the form : wkv = (w, Wk—lv).

Identifying the longest prefix that is a Christoffel word :

Nested prefixes

. Corollary
Christoffel

RoCe A Christoffel word that admits w = (u, v) as a proper prefix, has a
prefix of the form : w*v = (w, w*"!v).

Identifying the longest prefix that is a Christoffel word :

Nested prefixes

. Corollary
Christoffel

RoCe A Christoffel word that admits w = (u, v) as a proper prefix, has a
prefix of the form : w*v = (w, w*"!v).

Identifying the longest prefix that is a Christoffel word :

Nested prefixes

. Corollary
Christoffel

words A Christoffel word that admits w = (u, v) as a proper prefix, has a
prefix of the form : wkv = (w, Wk—lv).

Identifying the longest prefix that is a Christoffel word :

pO
pl
U, | . V/
W
w [w [v
u %

Corollary
Let word w = (u, v) and v = pl, then p0 is a prefix of w.

Digital
convexity
test

Lexicographic order

Property

Lexicographic order on Christoffel words correspond to the order on
the slope

5/7

Digital
convexity
test

Lexicographic order

Property

Lexicographic order on Christoffel words correspond to the order on
the slope

5/7

Digital
convexity
test

Lexicographic order

Property

Lexicographic order on Christoffel words correspond to the order on
the slope

5/7 7/9

Digital
convexity
test

Lexicographic order

Property

Lexicographic order on Christoffel words correspond to the order on
the slope

5/7 7/9

12 /'35

Digital
convexity
test

Lyndon words

Definition ([Lyndon 54])

A w is a Lyndon word iff for every proper suffix s of w,

W <Lex S

Examples :
@ aabab is Lyndon since aabab <iex {abab, bab, ab, b},
@® abaab is not Lyndon, since aab <|ex abaab.

© aabaab is not Lyndon, since aab <|ex aabaab.

Lyndon words

Definition ([Lyndon 54])

A w is a Lyndon word iff for every proper suffix s of w,
Digital

convexity
test W <tex S

Examples :
@ aabab is Lyndon since aabab <iex {abab, bab, ab, b},
® abaab is not Lyndon, since aab <|ex abaab.

© aabaab is not Lyndon, since aab <|ex aabaab.

Theorem ([Chen, Fox, Lyndon 58])
Every word has a unique factorization as non-increasing Lyndon words

Example :
110110110010011000
= 1-1-011-011-0010011-0-0-0
(1)> - (011)> - (0010011)* - (0)3.

Combinatorial view of convexity

Theorem ([Brlek, Lachaud, P., Reutenauer 09])

The north-west part of a digital shape is convex iff its Lyndon
factorization contains only Christoffel words.

Digital

convexity

test Sketch of the proof :
e Uniqueness of the Lyndon factorization.
e No integer points between a Christoffel word and its convex hull.

110110111010100010010000100010000
=(1)* - 0110111 - (01)® - 001001 - 000010001 - (0)*

Combinatorial view of convexity

Theorem ([Brlek, Lachaud, P., Reutenauer 09])

The north-west part of a digital shape is convex iff its Lyndon
factorization contains only Christoffel words.

Digital

convexity

test Sketch of the proof :
e Uniqueness of the Lyndon factorization.
e No integer points between a Christoffel word and its convex hull.
3

110110111010100010010000100010000
=(1)* - 0110111 - (01)® - 001001 - 000010001 - (0)*

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

Digital

convexity w =
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

Digital

convexity w = l
test

@ Let lp be a Lyndon prefix and k be it's number of repetitions.

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

w— Iy [Io [Io
p |a P |b
H/_/

If a > b then the Lyndon fact. starts by /§

@ Let lp be a Lyndon prefix and k be it's number of repetitions.

@ Identify at the first letter that is not that same than in .
® If its smaller than Iy is FLF,

15 /'35

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon
A

lo

Digital Iy [I [I

convexity w = P P) p b

test
H/_/
If a > b then the Lyndon fact. starts by /§

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon
A
lo
Digital Iy [I [I

convexity w = P P) p b

test
H/_/
If a > b then the Lyndon fact. starts by /§

L01001010010010001001
lo

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

N
lo
o= w=l—h T b [b
test g p |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
L
001001010010010001001
lo

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

N
lo
et w=th [b | &
test g p |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
Ll
001001010010010001001
o Io

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

N
lo
o= w=l—h T b [b
test g p |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
lo

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

N
lo
et w=th [b | &
test g p |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
Lol
001001010010010001001

lo

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

N
lo
o= w=l—h T b [b
test g p |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
Lo
001001010010010001001
lo

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

N
lo
et w=th [b | &
test g p |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
I I

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

N
lo
et w=th [b | &
test g p |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
I I

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

N
lo
et w=th [b | &
test g p |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
lo

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

N
lo
et w=th [b | &
test g p |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
lo

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

N
lo
et w=th [b | &
test g p |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| l
001001010010010001001
lo

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Digital
convexity
test

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
lo

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Digital
convexity
test

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
lo

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Digital
convexity
test

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
lo

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Digital
convexity
test

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
lo

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Digital
convexity
test

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
lo

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),
if a < b then [¥pb is a Lyndon

A
lo
o= w=l—h T b [b
test g p |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
Ll
001001010010010001001
/0 /1

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
[
001001010010010001001
Io /1 /1

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
Aj Il

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
Aj Il

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
l |
001001010010010001001
Aj Il

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
Io /1 /1

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
Io /1 /1

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
l |
001001010010010001001
Io /1 /1

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
L
001001010010010001001
I h Lok

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon

A
lo
W= b | b | &k
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
Ll
001001010010010001001
I h L hhk

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
IEE] [P [b]
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
Io h h h b bk

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
I h h b

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
I h h b

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon

A
lo
W= lo [b] lo
P |a P |b
H/_/
If a > b then the Lyndon fact. starts by /§
| |
001001010010010001001
I h h b

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Digital
convexity
test

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon
A
[

Iy | Io | Iy

W:Pa P |b

H/_/
If a > b then the Lyndon fact. starts by /§

001001010010010001001

Io h h h

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .

© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.

15 /'35

Duval algorithm
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then [¥pb is a Lyndon
A
lo

Digital lo [Iy [I

. w =
:eosrlvex\ty P 2 D b

H/_/
If a > b then the Lyndon fact. starts by /§

001001010010010001001
lo h h b

@ Let lp be a Lyndon prefix and k be it's number of repetitions.
@ Identify at the first letter that is not that same than in .
© |If its smaller than Iy is FLF, otherwise, lé‘pb is a Lyndon word.
When comparing two different letters, let Iy = (u, v) :
o if [pb| = |v| then
a=0and b=1 and I(’) is a Christoffel word.
e if [pb| # |v| and a =1 and b = 0 then
Ip is the first edge of the convex hull.
e if |pb| # |v| and a =0 and b =1 then
Shape is not convex.

15 /'35

From Euclid

- Part Il

Christoffel

Alternative
construction

Construction guided by Euclid

@ From Euclid to Christoffel

@ Alternative construction

16 /'35

From Euclid
to
Christoffel

Stern-Brocot tree

0
1

e

> o

Bl

(GI[N]

o8

vlw

> -

Wi

wlx

> .

Nio

IS

ol

Euclid Algorithm

Euclid
algorithm Approximation
(7.9) (1,1)
1 {
(7,2) (1,2)
\ +
(5,2) (2,3)
1 {
(3,2) (3,4)
\ 1
(1,2) (4,5)
1 i
(1,1) (7,9)

From Euclid
to
Christoffel

Matricial view

aIE(L)J:iItI:m Approx.
(7.9) (1,1)
1 1
(7.2) (1,2)
1 1
(5.2) (2,3)
1 1
(3.2) (3,4)
! '
(1,2) (4,5)
1 1
(1,1) (7,9)

Euclid algorithm
Given a vector (x,y), return

° [_i (])-} if x <y,
° [é _i} if x>y,

e stop if x=y.

Given a vector v € (N\ {0})?, let :
® \g=v,

M, = Euclid(v,—1)

o F ln>1:
or all n > {Vn:ann_l_

Matricial view

From Euclid
to

Christoffel

Euclid Euclid algorithm
algorithm Approx. Given a vector (x,y), return

n Vn an o[_i (l)}ifx<y,
o (19 | (LY <o 1] ey

' ' _

e stop if x =y.

1 (7,2) (1,2)

4 4 Given a vector v € (N\ {0})?, let :
2 (5,2) (2,3) ° vo=v,

+ + e Foralln>1: { C/’n_=A5u\::|id(v,,,1)
3] 32 | 39 T

! !
4 (1,2) (4,5) Property

4 { ® vp=MMp_1---Mv

5 (1,1) (7,9) o a,,:Ml_le_l-uMn_l({)

Matricial view

From Euclid
to

Christoffel
Lemma
Let A, B, C be Christoffel words such that C = (A, B) and ? = @

Let A = (A, A,), B = (Bs, B,), then:

MMy M = { _ﬁ“; —g; }

Proof. By recurrence. True for n =0, Id = [(1) (1) } Suppose true for n,

(A, B)

Matricial view

From Euclid
to
Christoffel

Lemma
Let A, B, C be Christoffel words such that C = (A, B) and ? = @

Let A = (A, A,), B = (Bs, B,), then:

MMy M = { _ﬁ“; —g; }

Proof. By recurrence. True for n =0, Id = [(1) (1) } Suppose true for n,
(A, B)
(A, AB) (AB, B)
N 3 A Rl

M- M, er = (Ac, —A))
M - M, & =(-B,B,)

The Translation-Union Construction

Construction
i [Domenjoud, Vuillon 12], ec B, Oe€l,
construction § - [Berthé, Jamet, Jolivet, P. 2013]
Let vo = v, By = {0} and for all n > 1
let : vo = (2,3),
M, : the matrix selected from v,_1, a = (L,1)
Ho = (0,0),
Vo = Mpvp_1 Lo = {(1,0),(0,1)}.
dp : the index of the coordinate of v,_;
that is subtracted, vi=(2,1),61=1
ay = (17 2)
To=M - Mes,, (translation) T1 =(1,0) I
H: = (1,0),
B, = anl U (Tn + anl)y (bOd,V) L, = {(27 0)7 (07 1)}
H, = Zie{l n} Ti, (highest point)
Ln=Hp+{M - M e} legs v2=(1,1),62 =2
n ”+{ 1 n I} (o) 32:(273)
T, =(-1,1)
. H2 = (07 1
Note that: L = {(2, 1), (~1,1)}.
Hp € Bn,

L,NB,=0.

70 /'35

The Translation-Union Construction

Alternative
construction

Property

The points of B, U L, for the Christoffel word of vector ap.
Moreover, let {x,y} = L, then (x, an) = (y, an).

® cB,
O €L,
a, = (7,9)

.
M e

A general
construction

The fully
subtractive
algorithm

Part Il

Generalization to higher dimensions

@ A general construction

@® The fully subtractive algorithm

77 /'35

A general
construction

3D continued fraction algorithms

Euclid algorithm : given two number subtract the smaller to the larger.
(7,9) = (7,2) = (5,2) = (3,2) = (1,2) = (1,1) — (1,0)

A general
construction

3D continued fraction algorithms

Euclid algorithm : given two number subtract the smaller to the larger.
(7,9) = (7,2) = (5,2) — (3,2) = (1,2) — (1,1) — (1,0)

Given three numbers :

e Selmer : subtract the smallest to the largest.
(3,7,5) = (3,4,5) = (3,4,2) = (3,2,2) — (1,2,2) — (1,2,0) —
(1,1,0) — (1,0,0).
e Brun : subtract the second largest to the largest.
(3,7,5) = (3,2,5) = (3,2,2) — (1,2,2) — (1,2,0) — (1,1,0) — (1,0,0).
e Fully subtractive : subtract the smallest to the two others.
(3,7,5) = (3,4,2) = (1,2,2) — (1,1,1) — (1,0,0).
e Poincaré : subtract the smallest to the mid and the mid to the
largest.
(3,7,5) = (3,2,2) = (1,2,0) = (1,1,0) — (1,0,0).
e Arnoux-Rauzy : subtract the sum of the two smallest to the
largest (not always possible).
(3,7,5) — impossible.

A general
construction

The Translation-Union Construction

Construction

Let vo = v, By = {0} and for all n > 1
let :

M, : the matrix selected from v,_1,
Vo = Mpvp_1

On : the index of the coordinate of v,_;
that is subtracted,

Th = I\/IIT <M es,, (translation)
B, =B,-1U (Tn aF B,,_l)7 (body)
H, = Zie{l o) Ti, (highest point)

Lp=Hp+{M] - M e} (legs)

54 36

A general
construction

The Translation-Union Construction

Construction

Let vo = v, By = {0} and for all n > 1
let :

M, : the matrix selected from v,_1,
Vo = Mpvp_1

On : the index of the coordinate of v,_;
that is subtracted,
To=M"---Mes,,

(translation)

Bn = Bn—l U (Tn + Bn—1)7

Hn = Zie{l,...,n} Ti,
Lp=Hp+{M] - M e}

(body)
(highest point)

(legs)

Property

If the action of M, is to subtract
a coordinate to at least one other
coordinate while keeping it
positive, then B, € P(v,0).

Proof : (Th,v) = (M ...M] es,,v) =
(es,s Mn -+ Myv) = (es,, vn) is equal to
the value of the coordinate that is
subtracted.

Let x € B, then x = Ziel T; for some
Ic{1,---,n} and

0 < {x,v) <llvlh

The fully
subtractive
algorithm

Construction using fully Subtractive

The fully subtractive algorithm :
Subtract the smallest coordinate to the two others.

The matrices are :

Construction using fully Subtractive

The fully
subtractive
algorithm

The fully subtractive algorithm :

Subtract the smallest coordinate to the two others.

The matrices are :

Definition
Let K be the set of vectors v such FS"(v) = (1,1,1) for some N > 1.

e £3(1,2,2 21,11
o K%(2,2,5) £ (0,2,3)

Tree structure

The fully
subtractive Theorem ([Domenjoud, Vuillon 12])

algorithm

When using the fully subtractive algorithm, the graph of B, is a tree.

Example : v = (136,184,249) € K

76 /'35

The fully
subtractive
algorithm

Recursive construction with Fully Subtractive

Fully
B,U L, Approx. subtractive
algorithm
[0]
|
)
o~ (1,1,1) (6,8,11)
[0)
|
o’ (1,2,2) (6,2,5)
[0]
|
o (2,3,4) (4,2,3)
0]
|
o’ (3,4,6) (2,2,1)
[0)
|
o (6.8,11) (1,1,1)

Recursive construction with Fully Subtractive

The fully
subtractive
algorithm

Property

Using Fully Subtractive on v € K, let N be such that vy = (1,1,1)
and so ay = v :

® By U Ly is connected.

® Bn has exactly one point at each height from 0 to \‘|V2”1J -1

® All points of Ly have height V HlJ

The fully
subtractive
algorithm

Recursive construction with Fully Subtractive

Property

Using Fully Subtractive on v € K, let N be such that vy = (1,1,1)
and so ay = v :

® By U Ly is connected.

® Bn has exactly one point at each height from 0 to \‘|V2”1J -1

® All points of Ly have height V HlJ

1. B, is a tree.

Recursive construction with Fully Subtractive

The full
i Property

seerthm Using Fully Subtractive on v € K, let N be such that vy = (1,1,1)
andsoay =v :

® By U Ly is connected.

® By has exactly one point at each height from 0 to \‘|V2”1J -1

® All points of Ly have height V HlJ

1. B, is a tree.

FS Fs FS
2.v=vw —> v — - — w=(1,1,1)

The heigth of each T; is equal to the coordinate that has been subtracted
to the two other coordinates.

Ially = [Iva—1lls = 2{T, v).

The fully
subtractive
algorithm

Recursive construction with Fully Subtractive

Property

Using Fully Subtractive on v € K, let N be such that vy = (1,1,1)
and so ay = v :

® By U Ly is connected.

® Bn has exactly one point at each height from 0 to \‘|V2”1J -1

® All points of Ly have height V HlJ

. B, is a tree.

FS

FS FS
v=w — v — - — vy = (1,1,1)

The heigth of each T; is equal to the coordinate that has been subtracted
to the two other coordinates.

Ially = [Iva—1lls = 2(T, v).

Ly=H, +{M]---M]e} and

<M1T o Mlzl—eh V> = <ei7 My --- M1V> = <eia V’V> = <ef7 (17 171)> =1

From pattern to digital plane
A general v =(6,8,11), LHV2||1J —12

construction

The fully
subtractive
algorithm

79 /'35

A general vV = (6785 11)’ |“|V2|I1J =12

construction

The fully
subtractive
algorithm

From pattern to digital plane

79 /'35

From pattern to digital plane
A general v =(6,8,11), LHV2||1J —12

construction

The fully
subtractive
algorithm

79 /'35

The fully
subtractive
algorithm

..»
uiﬁ !
«@%.a.«.%.n
3 P % !!0“‘-—
..@.«.«. ...«...,.,-? 5
%&.««.%.«.«..«.«.% “
.«..-.«%n.«.% g 2
..»«.a..«.«..«.« a..«@«.
: % 0‘0‘ ()
; u.«..n.». %.n«.%.«.
..u«.a..«.«. n.«%._«.
?..««.a..«.«. i
O !..««.!oﬁo«.i .
.a.«.a..««.a..«
e i
!00“0“00 .
0!0“0
.

N\
%_
2 /N T\
N\
N\
N

A general
construction

The fully
subtractive
algorithm

FS

v BB

(0,0,1)

The set

(1,0,0)

(0,1,0)

30 /'35

Vectors not in K

The fully
subtractive
algorithm

Let v € (N\ {0})® such that v € K, then either :
® FS"(v) =(g,8,8) with g > 2.
® FS"(v) = (a, a, b) with a < b so that FS((a, a, b)) = (0,a,b — a).
® FS"(v) = (a,b,c) with a+ b < c.

31 /'35

Vectors not in K

The fully
subtractive
algorithm

Let v € (N\ {0})® such that v € K, then either :
® FS"(v) =(g,8,8) with g > 2.
® FS"(v) = (a, a, b) with a < b so that FS((a, a, b)) = (0,a,b — a).
® FS"(v) = (a,b,c) with a+ b < c.

Solution:
® Then g = gcd(v), use v/g € K.

31 /'35

Vectors not in K

The fully
subtractive
algorithm

Let v € (N\ {0})® such that v € K, then either :
® FS"(v) =(g,8,8) with g > 2.
® FS"(v) = (a, a, b) with a < b so that FS((a, a, b)) = (0,a,b — a).
® FS"(v) = (a,b,c) with a+ b < c.

Solution:
® Then g = gcd(v), use v/g € K.
® Do not use FS. ..
® Do not use FS. ..

31 /'35

Vectors not in K

The fully
subtractive
algorithm

Let v € (N\ {0})® such that v € K, then either :
® FS"(v) =(g,8,8) with g > 2.
® FS"(v) = (a, a, b) with a < b so that FS((a, a, b)) = (0,a,b — a).
® FS"(v) = (a,b,c) with a+ b < c.

Solution:
® Then g = gcd(v), use v/g € K.
® Do not use FS. ..
® Do not use FS. ..
...ok but what else ?

31 /'35

Vectors not in K
Idea : Use hybrid algorithm, suppose a < b < c,

The fully (a,b,) = FS((a,b,c))ifa# band a+ b <c,
Hbe)= Brun((a, b, ¢)) otherwise.

algorithm

Brun: subtract the second biggest coordinate to the biggest one.

(9,15,11) 5, (9,6,2)
® ®

The fully
subtractive
algorithm

The hybrid FS+Brun algorithm

Property ([Lafreniere, Jamet, P.)]
Using the hybrid FS+Brun algorithm, for all vector v € (N \ {0})*
@ 3N such that vy = (1,1,1) (or ged...).
@® Vectors of L, have same height, (providing period vectors).
® B, U L, is connected but in general not a tree.
o |15] — 1< (Hw) <|lvi:.
© There is a least one point at each height from O to (Hy) but in
general no unicity.

Brun

—(1,1,1)

Conclusion

The fully
subtractive
algorithm GOOd :

o Generalization of Christoffel words to higher dimensions.

e Construction is recursive and based on continued fraction algorithms.

e Construction of the periodic pattern of the digital plane for .

Problems: Open questions :
e Provide a ged algorithm that builds minimal patterns for KC.
e Give a geometrical interpretation of the patterns produced by the hybrid
algorihtm.

e Control the anisotropy of the patterns (avoid stretched forms in favor of
potato-likeness).

e Apply recursive structure to image analysis algorithms.

34 /'35

(O < By <=

«=»

93

	Recursive Structure of Digital line
	Definition
	Periodic structure
	Christoffel words
	Digital convexity test

	Construction guided by Euclid
	From Euclid to Christoffel
	Alternative construction

	Generalization to higher dimensions
	A general construction
	The fully subtractive algorithm

