Recursive structure of digital planes, a combinatorial approach based on continued fractions

Xavier Provençal Laboratoire de Mathématiques Université Savoie Mont-Blanc

Journées Informatique et Géométrie 2015 8 octobre 2015, Paris

Outline

Recursive Structure of Digital line

2 Construction guided by Euclid

3 Generalization to higher dimensions

Periodic structure

Christoffe words

Digital convexi test

Part I

Recursive Structure of Digital line

- Definition
- 2 Periodic structure
- 3 Christoffel words
- 4 Digital convexity test

Periodic

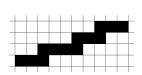
Christoffe words

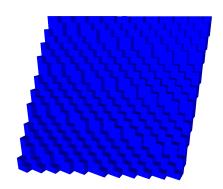
Digital convexity test

Definition ([Reveillès 91])

The digital hyperplane $\mathcal{P}(v,\mu)$ with normal vector $v \in \mathbb{Z}^d$, shift $\mu \in \mathbb{R}$ is the subset of \mathbb{Z}^d defined by:

$$\mathcal{P}(\mathbf{v}, \mu) = \left\{ \mathbf{x} \in \mathbb{Z}^d \mid \mu \le \langle \mathbf{x}, \mathbf{v} \rangle < \mu + \|\mathbf{v}\|_1 \right\}$$





Periodic

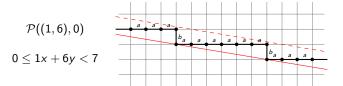
Christoffe words

Digital convexity test

Definition ([Reveillès 91])

The digital hyperplane $\mathcal{P}(v,\mu)$ with **normal vector** $v \in \mathbb{Z}^d$, **shift** $\mu \in \mathbb{R}$ is the subset of \mathbb{Z}^d defined by:

$$\mathcal{P}(\mathbf{v}, \mu) = \left\{ x \in \mathbb{Z}^d \mid \mu \le \langle x, \mathbf{v} \rangle < \mu + \|\mathbf{v}\|_1 \right\}$$



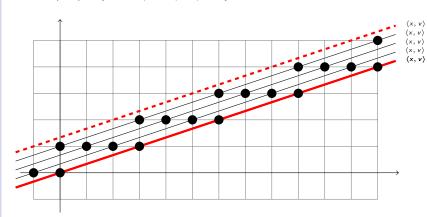
A digital line can be coded on two letters.

Digital convexit

• $\langle x, v \rangle$ is the **height** of x,

•
$$v = (-3, 1)$$
,

•
$$\mathcal{P}(v,0) = \{x \in \mathbb{Z}^2 \mid 0 \le \langle x,v \rangle < 4\}.$$

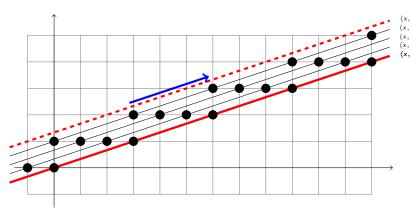


Digital convexit

• $\langle x, v \rangle$ is the **height** of x,

•
$$v = (-3, 1)$$
,

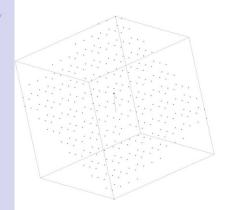
•
$$\mathcal{P}(v,0) = \{x \in \mathbb{Z}^2 \mid 0 \le \langle x,v \rangle < 4\}.$$

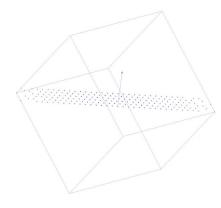


- $\langle x, v \rangle = \langle y, v \rangle \implies y x$ is a period vector.
- A point of each height from 0 to $\|v\|_1 1$ appear in a period.

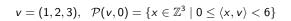
Digital convexit

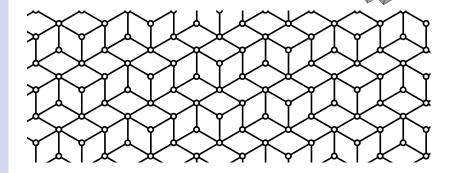
$$v = (1,2,3), \ \mathcal{P}(v,0) = \{x \in \mathbb{Z}^3 \mid 0 \le \langle x,v \rangle < 6\}$$



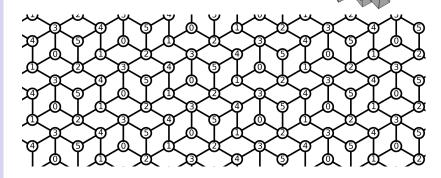


Periodic structure of a digital plane



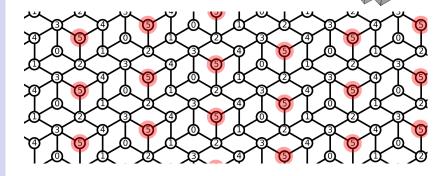


$$v=(1,2,3), \ \mathcal{P}(v,0)=\{x\in\mathbb{Z}^3\mid 0\leq \langle x,v\rangle<6\}$$

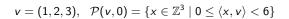


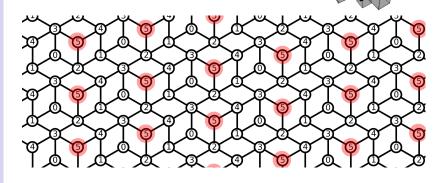
Periodic structure of a digital plane

$$v = (1,2,3), \ \mathcal{P}(v,0) = \{x \in \mathbb{Z}^3 \mid 0 \le \langle x,v \rangle < 6\}$$



Periodic structure of a digital plane





- $\langle x, v \rangle = \langle y, v \rangle \implies y x$ is a period vector.
- A point of each height from 0 to $||v||_1 1$ appear in a period.

Christoffel words

Digital convexitest

Definition ([Christoffel 1875])

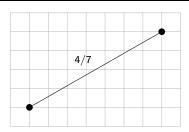
A $\mbox{\it Christoffel word}$ codes digital path right below a segments between two consecutive integer points

Christoffel words

Digital convexit test

Definition ([Christoffel 1875])

A $\mbox{\it Christoffel word}$ codes digital path right below a segments between two consecutive integer points

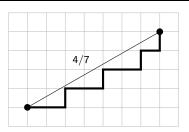


Christoffel words

Digital convexit test

Definition ([Christoffel 1875])

A $\mbox{\it Christoffel word}$ codes digital path right below a segments between two consecutive integer points



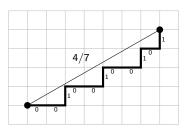
Periodic

Christoffel words

Digital convexit test

Definition ([Christoffel 1875])

A $\mbox{\it Christoffel word}$ codes digital path right below a segments between two consecutive integer points



w = 00100100101 is the Christoffel word of slope 4/7.

Christoffel words

Definition

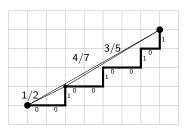
Periodic

Christoffel words

Digital convexit test

Definition ([Christoffel 1875])

A **Christoffel word** codes digital path right below a segments between two consecutive integer points



 $w = 001 \cdot 00100101$ is the Christoffel word of slope 4/7.

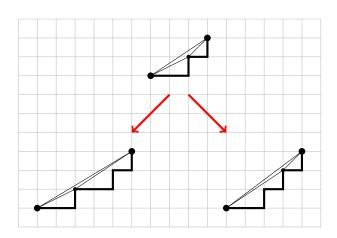
Theorem ([Borel, Laubie 93])

Any Christoffel word, other than 0 and 1, can be written in a unique way as a product of two Christoffel words.

This is called the **standard factorization**, noted w = (u, v).

Christoffel Tree

If (u, v) is a standard factorization, then (u, uv) and (uv, v) are standard factorizations of Christoffel words.



Christoffel words

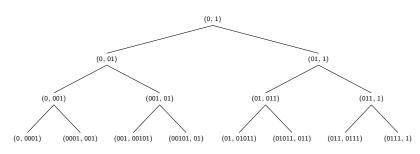
Christoffel Tree

Periodic

Christoffel words

Digital convexity test If (u, v) is a standard factorization, then (u, uv) and (uv, v) are standard factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from (0,1), using the rule : (u,v)



Christoffel Tree

Periodic

Christoffel words

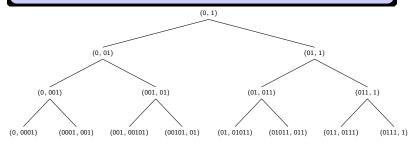
Digital convexity test If (u, v) is a standard factorization, then (u, uv) and (uv, v) are standard factorizations of Christoffel words.

The Christoffel Tree is the tree obtained, starting from (0,1), using the rule : (u,v)

 (u, \overline{uv}) (uv, v)

Theorem

Every Christoffel word appears exactly once in the Christoffel Tree.



Stern-Brocot Tree

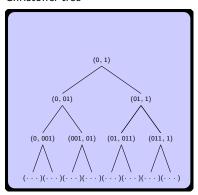
Definition

Periodic

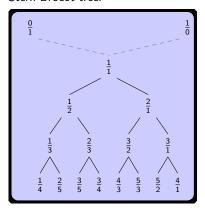
Christoffel words

Digital convexity test

Christoffel tree



Stern-Brocot tree.



Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Stern-Brocot Tree

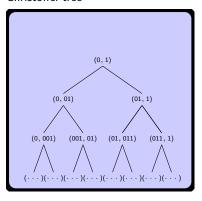
Definition

Periodic

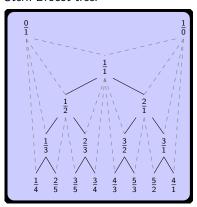
Christoffel words

Digital convexity test

Christoffel tree



Stern-Brocot tree.



Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Stern-Brocot Tree

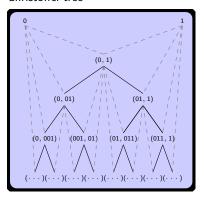
Definition

Periodic

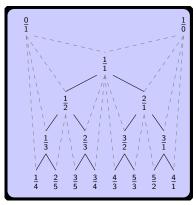
Christoffel words

> Digital convexity test

Christoffel tree



Stern-Brocot tree.



Every irreducible fraction appears exactly once in the Stern-Brocot tree.

Digital convexity

Definition

Periodic structure

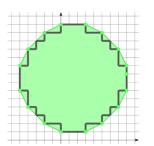
Christoffel words

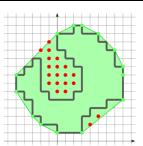
words Digital

Definition

A digital set $D \subset Z^d$ is digitally convex if

• Dig(Conv(D)) = D.





Definitions and characterizations:

- [Minsky and Papert 1969]
- [Sklansky 1970]
- [Kim, Rosenfeld 1981]
- [Hübler, Klette, Voss 1981]

- [Chassery 1983]
- ..
- [Brlek, Lachaud, P., Reutenauer 2009]

Digital convexity test

Corollary

A Christoffel word that admits w = (u, v) as a proper prefix, has a prefix of the form : $w^k v = (w, w^{k-1}v)$.

Corollary

A Christoffel word that admits w = (u, v) as a proper prefix, has a prefix of the form : $w^k v = (w, w^{k-1}v)$.

Corollary

A Christoffel word that admits w = (u, v) as a proper prefix, has a prefix of the form : $w^k v = (w, w^{k-1}v)$.

D-C-M-

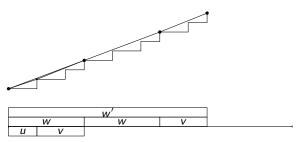
Periodic structure

Christoffel words

Digital convexity test

Corollary

A Christoffel word that admits w = (u, v) as a proper prefix, has a prefix of the form : $w^k v = (w, w^{k-1}v)$.



D-C-M-

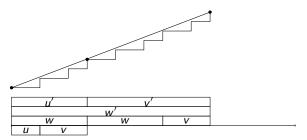
Periodic structure

Christoffel words

Digital convexit test

Corollary

A Christoffel word that admits w = (u, v) as a proper prefix, has a prefix of the form : $w^k v = (w, w^{k-1}v)$.



D-G-M--

Periodic

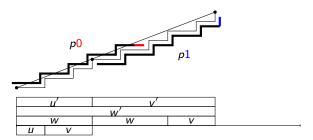
Christoffel words

Digital convexity test

Corollary

A Christoffel word that admits w = (u, v) as a proper prefix, has a prefix of the form : $w^k v = (w, w^{k-1}v)$.

Identifying the longest prefix that is a Christoffel word :



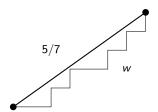
Corollary

Let word w = (u, v) and v = p1, then p0 is a prefix of w.

Christoffel

Digital convexity test

Property

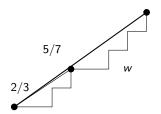


Periodic

Christoffel

Digital convexity test

Property

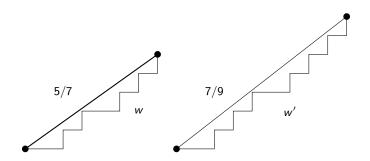


Periodic

Christoff

Digital convexity test

Property



Lexicographic order

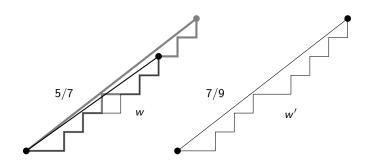
Definition

Periodic

Christofl

Digital convexity test

Property



Digital convexity test

Definition ([Lyndon 54])

A w is a Lyndon word iff for every proper suffix s of w,

$$w <_{\mathsf{Lex}} s$$

Examples:

- **1** aabab is Lyndon since $aabab <_{Lex} \{abab, bab, ab, b\}$,
- 2 abaab is not Lyndon, since $aab <_{Lex} abaab$.
- 3 aabaab is not Lyndon, since $aab <_{Lex} aabaab$.

Digital convexit

Definition ([Lyndon 54])

A w is a Lyndon word iff for every proper suffix s of w,

$$w <_{\mathsf{Lex}} s$$

Examples:

- **1** aabab is Lyndon since $aabab <_{Lex} \{abab, bab, ab, b\}$,
- 2 abaab is not Lyndon, since $aab <_{Lex} abaab$.
- 3 aabaab is not Lyndon, since $aab <_{Lex} aabaab$.

Theorem ([Chen, Fox, Lyndon 58])

Every word has a unique factorization as non-increasing Lyndon words

Example:

Combinatorial view of convexity

Periodic

Christoffe

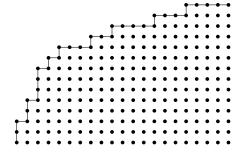
Digital convexity test

Theorem ([Brlek, Lachaud, P., Reutenauer 09])

The north-west part of a digital shape is convex iff its Lyndon factorization contains only Christoffel words.

Sketch of the proof:

- Uniqueness of the Lyndon factorization.
- No integer points between a Christoffel word and its convex hull.



110110111010100010010000100010000

 $=(1)^2 \cdot 0110111 \cdot (01)^2 \cdot 001001 \cdot 000010001 \cdot (0)^4$

Combinatorial view of convexity

Periodic

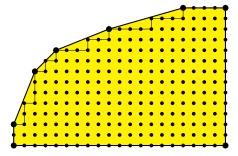
Christoffe

Digital convexity test Theorem ([Brlek, Lachaud, P., Reutenauer 09])

The north-west part of a digital shape is convex iff its Lyndon factorization contains only Christoffel words.

Sketch of the proof:

- Uniqueness of the Lyndon factorization.
- No integer points between a Christoffel word and its convex hull.



110110111010100010010000100010000

 $=(1)^2 \cdot 0110111 \cdot (01)^2 \cdot 001001 \cdot 000010001 \cdot (0)^4$

Difficulting

Periodic

Christoffel

Digital convexity test

Recursive computation of the First Lyndon Prefix (FLF),

v = -----

Definition

Periodic

Christoffel

Digital convexity test

Recursive computation of the First Lyndon Prefix (FLF),

① Let l_0 be a Lyndon prefix and k be it's number of repetitions.

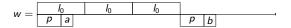
Definition

Periodic

Christoffel

Digital convexity test

Recursive computation of the First Lyndon Prefix (FLF),



- \bullet Let I_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .

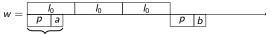
Definition

Periodic

Christoffel

Digital convexity test

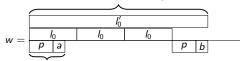
Recursive computation of the First Lyndon Prefix (FLF),



- 1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- 3 If its smaller than I0 is FLF,

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



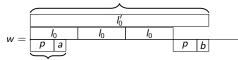
If a > b then the Lyndon fact. starts by I_0^k

Digital convexity

- 1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k

Digital convexity

- \bullet Let I_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition Recu

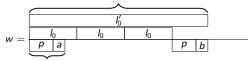
Periodic

Christoffel words

Digital convexity test

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

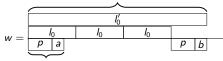
Periodic

Christoffel words

Digital convexity test

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



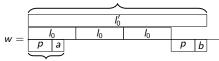
- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF),

Digital convexity

test

if a < b then $I_0^k pb$ is a Lyndon



- 1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

Periodic

Christoffel words

Digital convexity test

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $l_0^k pb$ is a Lyndon

- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

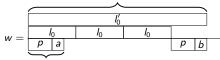
Periodic

Christoffel words

Digital convexity test

Recursive computation of the First Lyndon Prefix (FLF),

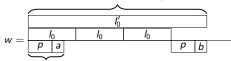
if a < b then $I_0^k pb$ is a Lyndon



- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon

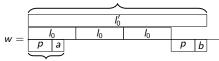


If a > b then the Lyndon fact. starts by I_0^k

- 1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



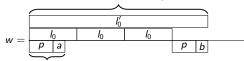
If a > b then the Lyndon fact. starts by I_0^k

- 1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF),

Digital convexity

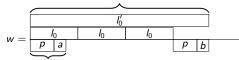
if a < b then $I_0^k pb$ is a Lyndon



- 1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon

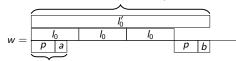


If a > b then the Lyndon fact. starts by I_0^k

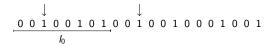
- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



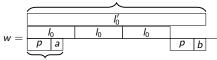
If a > b then the Lyndon fact. starts by I_0^k



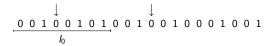
- 1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



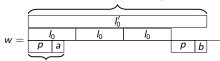
If a > b then the Lyndon fact. starts by I_0^k



- 1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k

- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF),

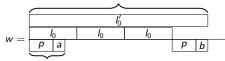
if a < b then $I_0^k pb$ is a Lyndon

If a > b then the Lyndon fact. starts by I_0^k

- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon

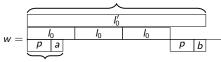


If a > b then the Lyndon fact. starts by I_0^k

- 1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon

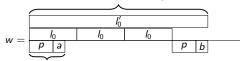


If a > b then the Lyndon fact. starts by I_0^k

- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

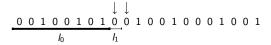
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k

Digital convexity



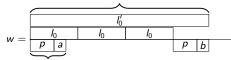
- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

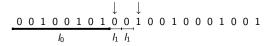
Recursive computation of the First Lyndon Prefix (FLF),

Digital convexity

test

if a < b then $I_0^k pb$ is a Lyndon

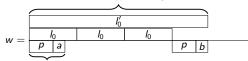




- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

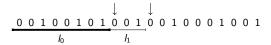
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k

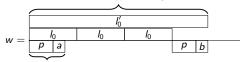
Digital convexity



- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

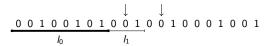
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k

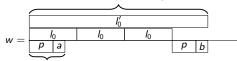
Digital convexity



- 1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

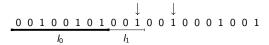
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k

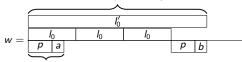
Digital convexity



- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

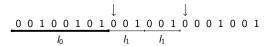
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k

Digital convexity



- 1 Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

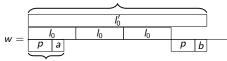
Periodic

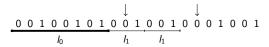
Christoffel words

Digital convexity test

Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon





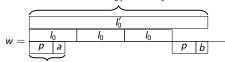
- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

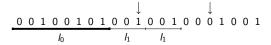
Recursive computation of the First Lyndon Prefix (FLF),

Digital convexity

test

if a < b then $I_0^k pb$ is a Lyndon

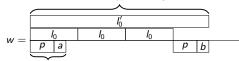




- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

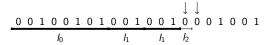
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k

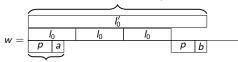
Digital convexity



- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

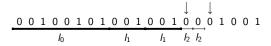
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k

Digital convexity



- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Definition

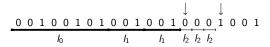
Periodic

Christoffel words

Digital convexity test

Recursive computation of the First Lyndon Prefix (FLF),

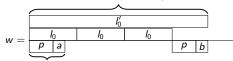
if a < b then $I_0^k pb$ is a Lyndon



- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- § If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

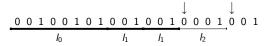
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k

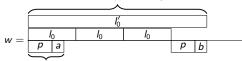
Digital convexity



- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

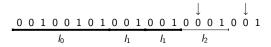
Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $I_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k

Digital convexity



- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

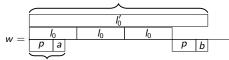
Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),

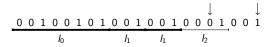
Digital convexity

test

if a < b then $I_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k

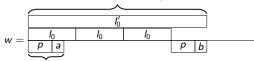


- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Duval algorithm

Recursive computation of the First Lyndon Prefix (FLF),

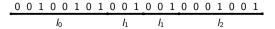
if a < b then $I_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k

Digital convexity

test



- **1** Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in l_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

Duval algorithm

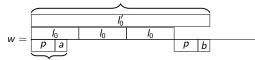
Definition

Periodic

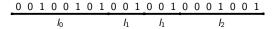
Christoffel words

Digital convexity test Recursive computation of the First Lyndon Prefix (FLF),

if a < b then $l_0^k pb$ is a Lyndon



If a > b then the Lyndon fact. starts by I_0^k



- ① Let l_0 be a Lyndon prefix and k be it's number of repetitions.
- 2 Identify at the first letter that is not that same than in I_0 .
- 3 If its smaller than l_0 is FLF, otherwise, $l_0^k pb$ is a Lyndon word.

When comparing two different letters, let $l_0 = (u, v)$:

- if |pb| = |v| then
- a=0 and b=1 and l'_0 is a Christoffel word.
- if $|pb| \neq |v|$ and a = 1 and b = 0 then l_0 is the first edge of the convex hull.
- if $|pb| \neq |v|$ and a = 0 and b = 1 then Shape is not convex.

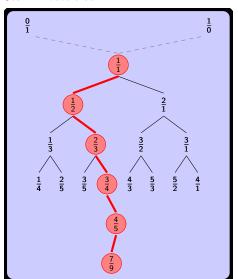
Part II

Construction guided by Euclid

5 From Euclid to Christoffel

6 Alternative construction

Stern-Brocot tree



Euclid Algorithm

Approximation
(1,1)
\downarrow
(1, 2)
↓
(2,3)
↓
(3, 4)
↓
(4,5)
↓
(7,9)

	Euclid algorithm	Approx.
n	V _n	a _n
0	(<u>7</u> , 9)	(1,1)
	↓	↓ ↓
1	(7, <u>2</u>)	(1, 2)
	↓	↓
2	(5, <u>2</u>)	(2, 3)
	↓	↓ ↓
3	(3, <u>2</u>)	(3, 4)
	↓	↓ ↓
4	(<u>1</u> , 2)	(4, 5)
	↓ ↓	↓
5	(1, 1)	(7,9)

Euclid algorithm

Given a vector (x, y), return

•
$$\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
 if $x < y$,

$$\bullet \left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right] \text{ if } x > y,$$

• stop if
$$x = y$$
.

Given a vector $v \in (\mathbb{N} \setminus \{0\})^2$, let :

- $v_0 = v$,
- For all $n \ge 1$: $\begin{cases} M_n = \mathbf{Euclid}(v_{n-1}) \\ v_n = M_n v_{n-1}. \end{cases}$

	Euclid algorithm	Approx.
n	Vn	a _n
0	(<u>7</u> , 9)	(1,1)
1	↓ (7, <u>2</u>)	\downarrow $(1,2)$
	\(\frac{1}{2}\)	(-,-)
2	(5, <u>2</u>)	(2,3)
	\	↓
3	(3, 2)	(3, 4)
	↓	↓ ↓
4	(1, 2)	(4, 5)
	↓ ↓	↓
5	(1, 1)	(7, 9)

Euclid algorithm

Given a vector (x, y), return

$$\bullet \left[\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} \right] \text{ if } x < y,$$

$$\bullet \left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right] \text{ if } x > y,$$

• stop if
$$x = y$$
.

Given a vector $v \in (\mathbb{N} \setminus \{0\})^2$, let :

- $v_0 = v$,
- For all $n \ge 1$: $\begin{cases} M_n = \mathbf{Euclid}(v_{n-1}) \\ v_n = M_n v_{n-1}. \end{cases}$

Property

- $v_n = M_n M_{n-1} \cdots M_1 v$
- $a_n = M_1^{-1} M_2^{-1} \cdots M_n^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Alternative construction

Lemma

Let \overrightarrow{A} , B, C be Christoffel words such that C=(A,B) and $\overrightarrow{C}=a_n$. Let $\overrightarrow{A}=(A_x,A_y)$, $\overrightarrow{B}=(B_x,B_y)$, then:

$$M_1^{\top} M_2^{\top} \cdots M_n^{\top} = \left[\begin{array}{cc} A_x & -B_x \\ -A_y & B_y \end{array} \right]$$

Proof. By recurrence. True for n = 0, $Id = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Suppose true for n,

$$(A, AB) \qquad (AB, B)$$

$$M_1^\top \cdots M_{n+1}^\top = \left[\begin{array}{cc} A_x & -B_x \\ -A_y & B_y \end{array} \right] \left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} A_x & -A_x - B_x \\ -A_y & A_y + B_y \end{array} \right].$$

hristoffel Iternative

Lemma

Let \overrightarrow{A} , B, C be Christoffel words such that C = (A, B) and $\overrightarrow{C} = a_n$. Let $\overrightarrow{A} = (A_x, A_y)$, $\overrightarrow{B} = (B_x, B_y)$, then:

$$M_1^{\top} M_2^{\top} \cdots M_n^{\top} = \begin{bmatrix} A_x & -B_x \\ -A_y & B_y \end{bmatrix}$$

Proof. By recurrence. True for n = 0, $Id = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Suppose true for n,

$$(A, B)$$

$$(A, AB) \qquad (AB, B)$$

$$M_1^{\top} \cdots M_{n+1}^{\top} = \begin{bmatrix} A_x & -B_x \\ -A_y & B_y \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} A_x & -A_x - B_x \\ -A_y & A_y + B_y \end{bmatrix}.$$

$$M_1^{\top} \cdots M_n^{\top} e_1 = (A_x, -A_y)$$

$$M_1^{\top} \cdots M_n^{\top} e_2 = (-B_x, B_y)$$

The Translation-Union Construction

Alternative

construction

Construction

[Domenjoud, Vuillon 12], [Berthé, Jamet, Jolivet, P. 2013]

Let $v_0 = v$, $B_0 = \{0\}$ and for all n > 1let:

 M_n : the matrix selected from v_{n-1} ,

$$v_n = M_n v_{n-1}$$

 δ_n : the index of the coordinate of v_{n-1} that is subtracted.

$$T_n = M_1^{\top} \cdots M_n^{\top} e_{\delta_n},$$
 (translation)

$$B_n = B_{n-1} \cup (T_n + B_{n-1}), \qquad (body)$$

$$H_n = \sum_{i \in \{1,...,n\}} T_i$$
, (highest point)

$$L_n = H_n + \{M_1^\top \cdots M_n^\top e_i\}. \tag{legs}$$

Note that:

$$H_n \in B_n$$
,
 $L_n \cap B_n = \emptyset$.

 $\bullet \in B_n$, $\bigcirc \in L_n$

$$v_0 = (2,3),$$
 $a_0 = (1,1)$
 $H_0 = (0,0),$
 $L_0 = \{(1,0),(0,1)\}.$

$$v_1 = (2, 1), \delta_1 = 1$$

 $a_1 = (1, 2)$
 $T_1 = (1, 0)$
 $H_1 = (1, 0),$
 $L_1 = \{(2, 0), (0, 1)\}.$

$$v_2 = (1,1), \delta_2 = 2$$
 $a_2 = (2,3)$
 $T_2 = (-1,1)$
 $H_2 = (0,1),$
 $L_1 = \{(2,-1),(-1,1)\}.$

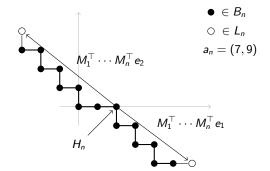
The Translation-Union Construction

From Euclid

Alternative construction

Property

The points of $B_n \cup L_n$ for the Christoffel word of vector a_n . Moreover, let $\{x, y\} = L_n$ then $\langle x, a_n \rangle = \langle y, a_n \rangle$.



Part III

Generalization to higher dimensions

7 A general construction

8 The fully subtractive algorithm

Euclid algorithm: given two number subtract the smaller to the larger.

$$(7,9) \rightarrow (7,2) \rightarrow (5,2) \rightarrow (3,2) \rightarrow (1,2) \rightarrow (1,1) \rightarrow (1,0)$$

Euclid algorithm: given two number subtract the smaller to the larger.

$$(7,9)
ightarrow (7,2)
ightarrow (5,2)
ightarrow (3,2)
ightarrow (1,2)
ightarrow (1,1)
ightarrow (1,0)$$

Given three numbers:

• Selmer : subtract the smallest to the largest.

$$(3,7,5) \rightarrow (3,4,5) \rightarrow (3,4,2) \rightarrow (3,2,2) \rightarrow (1,2,2) \rightarrow (1,2,0) \rightarrow (1,1,0) \rightarrow (1,0,0).$$

Brun: subtract the second largest to the largest.

$$(3,7,5) \to (3,2,5) \to (3,2,2) \to (1,2,2) \to (1,2,0) \to (1,1,0) \to (1,0,0).$$

• Fully subtractive : subtract the smallest to the two others.

$$(3,7,5) \to (3,4,2) \to (1,2,2) \to (1,1,1) \to (1,0,0).$$

 Poincaré: subtract the smallest to the mid and the mid to the largest.

$$(3,7,5) \rightarrow (3,2,2) \rightarrow (1,2,0) \rightarrow (1,1,0) \rightarrow (1,0,0).$$

 Arnoux-Rauzy: subtract the sum of the two smallest to the largest (not always possible).

$$(3,7,5) \rightarrow \text{impossible}.$$

Construction

Let $v_0 = v$, $B_0 = \{\mathbf{0}\}$ and for all $n \geq 1$ let:

 M_n : the matrix selected from v_{n-1} ,

 $v_n = M_n v_{n-1}$

 δ_n : the index of the coordinate of v_{n-1} that is subtracted.

$$T_n = M_1^\top \cdots M_n^\top e_{\delta_n}, \qquad (translation)$$

$$B_n = B_{n-1} \cup (T_n + B_{n-1}), \qquad (body)$$

$$B_n = B_{n-1} \cup (T_n + B_{n-1}),$$
 (body)

$$H_n = \sum_{i \in \{1, \dots, n\}} T_i$$
, (highest point)

$$L_n = H_n + \{M_1^\top \cdots M_n^\top e_i\}.$$
 (legs.)

Construction

Let $v_0 = v$, $B_0 = \{\mathbf{0}\}$ and for all $n \ge 1$ let :

 M_n : the matrix selected from v_{n-1} ,

 $v_n = M_n v_{n-1}$

 δ_n : the index of the coordinate of v_{n-1} that is subtracted,

$$T_n = M_1^{\top} \cdots M_n^{\top} e_{\delta_n},$$
 (translation)
 $B_n = B_{n-1} \cup (T_n + B_{n-1}),$ (body)

$$H_n = \sum_{i \in \{1,...,n\}} T_i$$
, (highest point)

$$L_n = H_n + \{M_1^\top \cdots M_n^\top e_i\}.$$
 (legs

Property

If the action of M_n is to subtract a coordinate to at least one other coordinate while keeping it positive, then $B_n \in \mathcal{P}(v,0)$.

 $\begin{array}{l} \text{Proof}: \langle T_n, v \rangle = \langle M_1^\top \dots M_n^\top e_{\delta_n}, v \rangle = \\ \langle e_{\delta_n}, M_n \dots M_1 v \rangle = \langle e_{\delta_n}, v_n \rangle \text{ is equal to} \\ \text{the value of the coordinate that is} \\ \text{subtracted}. \end{array}$

Let $x \in B_n$, then $x = \sum_{i \in I} T_i$ for some $I \subset \{1, \dots, n\}$ and

$$0 \le \langle x, v \rangle < ||v||_1$$

The fully subtractive algorithm

The fully subtractive algorithm:

Subtract the smallest coordinate to the two others.

The matrices are:

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right], \left[\begin{array}{ccc} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{array}\right], \left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right]$$

The fully subtractive algorithm:

Subtract the smallest coordinate to the two others.

The matrices are:

$$\left[\begin{array}{cccc} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right], \left[\begin{array}{cccc} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{array}\right], \left[\begin{array}{cccc} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right]$$

Definition

Let $\mathcal K$ be the set of vectors $\mathbf v$ such $\mathbf{FS}^{\mathcal N}(\mathbf v)=(1,1,1)$ for some $\mathcal N\geq 1.$

- $\mathcal{K} \ni (1,2,2) \xrightarrow{\mathsf{FS}} (1,1,1)$
- $\mathcal{K} \not\ni (2,2,5) \xrightarrow{\mathsf{FS}} (0,2,3)$

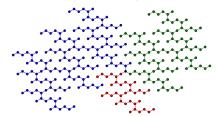
A general

The fully subtractive algorithm

Theorem ([Domenjoud, Vuillon 12])

When using the fully subtractive algorithm, the graph of B_n is a tree.

Example : $v = (136, 184, 249) \in \mathcal{K}$



algorithm

Recursive construction with Fully Subtractive

B. I. I.	Δ	Fully
$B_n \cup L_n$	Approx.	subtractive
		algorithm
0		
o · • · o	(1, 1, 1)	(<u>6</u> , 8, 11)
0		
•••		
o´	(1, 2, 2)	(6, 2, 5)
O		
0	(2,3,4)	(4, 2, 3)
0		
0	(3, 4, 6)	$(2,2,\underline{1})$
Φ		
0 0	(6, 8, 11)	(1,1,1)

Using Fully Subtractive on $v \in \mathcal{K}$, let N be such that $v_N = (1,1,1)$ and so $a_N = v$:

- **1** B_N ∪ L_N is connected.
- **Q** B_N has exactly one point at each height from 0 to $\left\lfloor \frac{\|v\|_1}{2} \right\rfloor 1$
- **3** All points of L_N have height $\left\lfloor \frac{\|v\|_1}{2} \right\rfloor$

Using Fully Subtractive on $v \in \mathcal{K}$, let N be such that $v_N = (1,1,1)$ and so $a_N = v$:

- **1** B_N ∪ L_N is connected.
- **9** B_N has exactly one point at each height from 0 to $\left\lfloor \frac{\|v\|_1}{2} \right\rfloor 1$
- **3** All points of L_N have height $\left\lfloor \frac{\|v\|_1}{2} \right\rfloor$
- 1. B_n is a tree.

Using Fully Subtractive on $v \in \mathcal{K}$, let N be such that $v_N = (1,1,1)$ and so $a_N = v$:

- **1** B_N ∪ L_N is connected.
- **2** B_N has exactly one point at each height from 0 to $\left\lfloor \frac{\|v\|_1}{2} \right\rfloor 1$
- **3** All points of L_N have height $\left\lfloor \frac{\|v\|_1}{2} \right\rfloor$
- 1. B_n is a tree.
- $2. \ v = v_0 \xrightarrow{\text{FS}} v_1 \xrightarrow{\text{FS}} \cdots \xrightarrow{\text{FS}} v_N = (1,1,1)$

The heigth of each T_i is equal to the coordinate that has been subtracted to the two other coordinates.

$$||v_n||_1 = ||v_{n-1}||_1 - 2\langle T_n, v \rangle.$$

Using Fully Subtractive on $v \in \mathcal{K}$, let N be such that $v_N = (1, 1, 1)$ and so $a_N = v$:

- \bullet $B_N \cup L_N$ is connected.
- **9** B_N has exactly one point at each height from 0 to $\left| \frac{\|v\|_1}{2} \right| 1$
- **3** All points of L_N have height $\left| \frac{\|v\|_1}{2} \right|$
- 1. B_n is a tree.
- 2. $v = v_0 \xrightarrow{FS} v_1 \xrightarrow{FS} \cdots \xrightarrow{FS} v_N = (1, 1, 1)$

The height of each T_i is equal to the coordinate that has been subtracted to the two other coordinates.

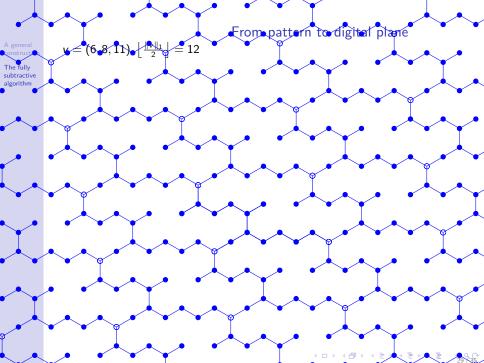
$$||v_n||_1 = ||v_{n-1}||_1 - 2\langle T_n, v \rangle.$$

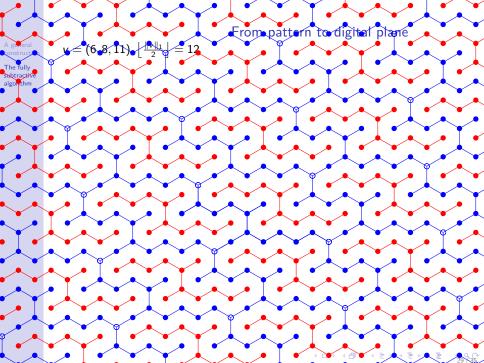
3. $L_n = H_n + \{M_1^T \cdots M_n^T e_i\}$ and $\langle M_1^T \cdots M_N^T e_i, v \rangle = \langle e_i, M_N \cdots M_1 v \rangle = \langle e_i, v_N \rangle = \langle e_i, (1, 1, 1) \rangle = 1.$

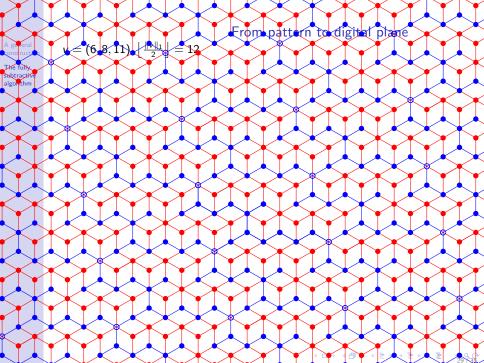
$$v=(6,8,11), \left\lfloor \frac{\|v\|_1}{2} \right\rfloor = 12$$

$$v=(6,8,11), \left\lfloor \frac{\|v\|_1}{2} \right\rfloor = 12$$

$$v=(6,8,11), \left\lfloor \frac{\|v\|_1}{2} \right\rfloor = 12$$

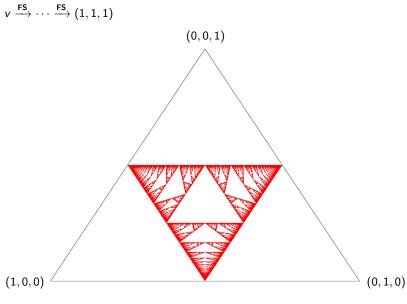






A general construction

The fully subtractive algorithm



- **1** $FS^n(v) = (g, g, g)$ with $g \ge 2$.
- **9** $FS^n(v) = (a, a, b)$ with a < b so that FS((a, a, b)) = (0, a, b a).
- **3** $FS^n(v) = (a, b, c)$ with $a + b \le c$.

- **1** $FS^n(v) = (g, g, g)$ with $g \ge 2$.
- **2** $FS^n(v) = (a, a, b)$ with a < b so that FS((a, a, b)) = (0, a, b a).
- **3** $FS^n(v) = (a, b, c)$ with $a + b \le c$.

Solution:

1 Then $g = \gcd(v)$, use $v/g \in \mathcal{K}$.

- **1** $FS^n(v) = (g, g, g)$ with $g \ge 2$.
- **2** $FS^n(v) = (a, a, b)$ with a < b so that FS((a, a, b)) = (0, a, b a).
- **3** $FS^n(v) = (a, b, c)$ with $a + b \le c$.

Solution:

- 1 Then $g = \gcd(v)$, use $v/g \in \mathcal{K}$.
- 2 Do not use FS...
- 3 Do not use FS...

- **1 FS**ⁿ(v) = (g, g, g) with $g \ge 2$.
- **2** $FS^n(v) = (a, a, b)$ with a < b so that FS((a, a, b)) = (0, a, b a).
- **3** $FS^n(v) = (a, b, c)$ with $a + b \le c$.

Solution:

- 1 Then $g = \gcd(v)$, use $v/g \in \mathcal{K}$.
- 2 Do not use FS...
- 3 Do not use FS...

...ok but what else?

Vectors not in K

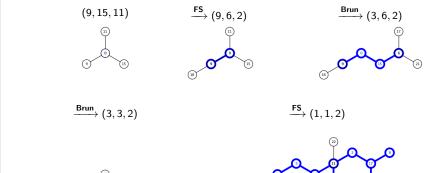
A general

The fully subtractive algorithm

Idea : Use hybrid algorithm, suppose $a \le b \le c$,

$$(a,b,c) = \left\{ egin{array}{l} extsf{FS}((a,b,c)) & extsf{if } a
eq b extsf{ and } a+b \leq c, \\ extsf{Brun}((a,b,c)) & extsf{otherwise}. \end{array}
ight.$$

Brun: subtract the second biggest coordinate to the biggest one.



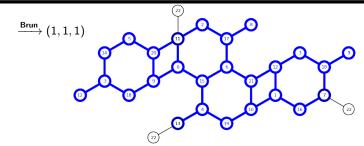
A general

The fully subtractive algorithm

Property ([Lafrenière, Jamet, P.)]

Using the hybrid **FS+Brun** algorithm, for all vector $v \in (\mathbb{N} \setminus \{0\})^3$

- \bullet $\exists N$ such that $v_N = (1, 1, 1)$ (or gcd...).
- 2 Vectors of L_n have same height, (providing period vectors).
- 3 $B_n \cup L_n$ is connected but in general not a tree.
- **5** There is a least one point at each height from 0 to $\langle H_N \rangle$ but in general no unicity.



The fully subtractive algorithm

Good:

- Generalization of Christoffel words to higher dimensions.
- Construction is recursive and based on continued fraction algorithms.
- ullet Construction of the periodic pattern of the digital plane for ${\cal K}.$

Problems: Open questions:

- ullet Provide a gcd algorithm that builds minimal patterns for $\mathcal{K}^{\mathsf{C}}.$
- Give a geometrical interpretation of the patterns produced by the hybrid algorihtm.
- Control the anisotropy of the patterns (avoid stretched forms in favor of *potato-likeness*).
- Apply recursive structure to image analysis algorithms.

Merci