Numeric certified algorithm for computing the topology of projections of real space curves

Rémi Imbach, Guillaume Moroz and Marc Pouget

Veras Visibility Surfaces

Introduction	Isolating singularities	Enclosing C	Results
Projection and Apparent Contour			1/ 13

Projection and Apparent Contour

Curve defined as the intersection of two algebraic surfaces:

$$\mathcal{C}: \left\{ \begin{array}{l} p(x,y,z) = 0\\ q(x,y,z) = 0 \end{array} \right., (x,y,z) \in \mathbb{R}^3$$

Projection in the plane: $\mathcal{B} = \pi_{(x,y)}(\mathcal{C})$

Introduction	Isolating singularities	Enclosing C	Results
Projection and Apparent Contour			1/ 13

Projection and Apparent Contour

Curve defined as the intersection of two algebraic surfaces:

$$\mathcal{C}: \left\{ \begin{array}{l} p(x,y,z) = 0\\ p_z(x,y,z) = 0 \end{array} \right., (x,y,z) \in \mathbb{R}^3, \qquad \qquad p_z = \frac{\partial p}{\partial z} \end{array}$$

Apparent contour: $\mathcal{B} = \pi_{(x,y)}(\mathcal{C})$

Computing topology of a real plane curve \mathcal{B}

 $\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | f(x, y) = 0\}$ Singularities: $\{(x, y) \in \mathbb{R}^2 | f(x, y) = f_x(x, y) = f_y(x, y) = 0\}$

• Path tracking methods fail near singularities

Computing topology of a real plane curve \mathcal{B}

 $\mathcal{B} = \{ (x, y) \in \mathbb{R}^2 | f(x, y) = 0 \}$ Singularities: $\{ (x, y) \in \mathbb{R}^2 | f(x, y) = f_x(x, y) = f_y(x, y) = 0 \}$

- Path tracking methods fail near singularities
- Symbolic methods
 - CAD requires : computing with algebraic numbers

Computing topology of a real plane curve ${\cal B}$

 $\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | f(x, y) = 0\}$ Singularities: $\{(x, y) \in \mathbb{R}^2 | f(x, y) = f_x(x, y) = f_y(x, y) = 0\}$

- Path tracking methods fail near singularities
- Symbolic methods

- $\textbf{0} \text{ Restrict to a compact } \textbf{B}_0$
- Isolate in boxes:
 - boundary points
 - x-critical points
 - singularities
- Compute topology around singularities
- 3 Connect boxes

Computing topology of a real plane curve \mathcal{B}

 $\mathcal{B} = \{ (x, y) \in \mathbb{R}^2 | f(x, y) = 0 \}$ Singularities: $\{ (x, y) \in \mathbb{R}^2 | f(x, y) = f_x(x, y) = f_y(x, y) = 0 \}$

- Path tracking methods fail near singularities
- Symbolic methods

- $\textbf{0} \text{ Restrict to a compact } \textbf{B}_0$
- Isolate in boxes:
 - boundary points
 - x-critical points
 - singularities
- Compute topology around singularities
- Onnect boxes

Computing topology of a real plane curve $\mathcal B$

 $\mathcal{B} = \{ (x, y) \in \mathbb{R}^2 | f(x, y) = 0 \}$ Singularities: $\{ (x, y) \in \mathbb{R}^2 | f(x, y) = f_x(x, y) = f_y(x, y) = 0 \}$

- Path tracking methods fail near singularities
- Symbolic methods

- **O** Restrict to a compact \mathbf{B}_0
- Isolate in boxes:
 - boundary points
 - x-critical points
 - singularities
- Compute topology around singularities
- 3 Connect boxes

Computing topology of a real plane curve ${\cal B}$

 $\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | f(x, y) = 0\}$ Singularities: $\{(x, y) \in \mathbb{R}^2 | f(x, y) = f_x(x, y) = f_y(x, y) = 0\}$

- Path tracking methods fail near singularities
- Symbolic methods

- $\textbf{0} \text{ Restrict to a compact } \textbf{B}_0$
- Isolate in boxes:
 - boundary points
 - x-critical points
 - singularities
- Compute topology around singularities
- 3 Connect boxes

Computing topology of a real plane curve ${\cal B}$

 $\mathcal{B} = \{ (x, y) \in \mathbb{R}^2 | f(x, y) = 0 \}$ Singularities: $\{ (x, y) \in \mathbb{R}^2 | f(x, y) = f_x(x, y) = f_y(x, y) = 0 \}$

- Path tracking methods fail near singularities
- Symbolic methods

When $\mathcal B$ is a projection or an apparent contour

Results

3/13

Geometric characterization of nodes and cusps:

- 4D square system
- 0-dim solver

Certified numerical tools:

• 0-dim solver: subdivision

- Isolate in boxes:
 - boundary points
 - x-critical points
 - singularities

When $\mathcal B$ is a projection or an apparent contour

Enclosing $\ensuremath{\mathcal{C}}$ in a sequence of boxes:

- 1-dim solver
- 1 point on each C.C.: 0-dim solver

Geometric characterization of nodes and cusps:

- 4D square system
- 0-dim solver
- Restriction of the solving domain

Certified numerical tools:

- 0-dim solver: subdivision
- 1-dim solver: path tracker

- Isolate in boxes:
 - boundary points
 - x-critical points
 - singularities

Introduction	Isolating singularities	Enclosing C	Results
Deflation system			4/ 13

Isolating singularities

$$\mathcal{B} = \{(x,y) \in \mathbb{R}^2 | r(x,y) = 0\},$$

Singularities of \mathcal{B} are the solutions of:

$$\begin{cases} r(x, y) = 0\\ \frac{\partial r}{\partial x}(x, y) = 0\\ \frac{\partial r}{\partial y}(x, y) = 0 \end{cases}$$

... that is over-determined.

Introduction	Isolating singularities	Enclosing C	Results
Deflation system			4/ 13

Isolating singularities

$$\mathcal{B} = \{(x,y) \in \mathbb{R}^2 | r(x,y) = 0\},$$

Singularities of \mathcal{B} are the solutions of:

$$\begin{cases} r(x,y) = 0 \\ \frac{\partial r}{\partial x}(x,y) = 0 \end{cases} \text{ s.t. } \frac{\partial r}{\partial y}(x,y) = 0 \end{cases}$$

... that has solutions of multiplicity 2.

Isolating singularities of an apparent contour

 $\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | r(x, y) = 0\}$, where $r(x, y) = Res(p, p_z, z)(x, y)$

Singularities of \mathcal{B} are the solutions of:

$$\begin{cases} r(x,y) = 0 \\ \frac{\partial r}{\partial x}(x,y) = 0 \end{cases} \text{ s.t. } \frac{\partial r}{\partial y}(x,y) = 0 \end{cases}$$

... that has solutions of multiplicity 2.

Rémi Imbach, Guillaume Moroz and Marc Pouget

Isolating singularities of an apparent contour

 $\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | r(x, y) = 0\}$, where $r(x, y) = Res(p, p_z, z)(x, y)$

Singularities of \mathcal{B} are the regular solutions of:

$$(S_2) \begin{cases} s_{10}(x,y) = 0 \\ s_{11}(x,y) = 0 \end{cases}$$
 s.t. $s_{22}(x,y) \neq 0$

... where s_{10} , s_{11} , s_{22} are coefficients in the subresultant chain.

[IMP15] Rémi Imbach, Guillaume Moroz, and Marc Pouget. Numeric certified algorithm for the topology of resultant and discriminant curves.

Research Report RR-8653, Inria, April 2015.

Rémi Imbach, Guillaume Moroz and Marc Pouget

 $\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C}\}$

 $\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C}\}$

Let (x, y) be:

• a node: $(x, y, z_1), (x, y, z_2) \in C$, with $z_1 \neq z_2$ $z_1 = c - \sqrt{r}, z_2 = c + \sqrt{r}$

 $\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C}\}$

Let (x, y) be:

• a node: $(x, y, z_1), (x, y, z_2) \in C$, with $z_1 \neq z_2$ $z_1 = c - \sqrt{r}, z_2 = c + \sqrt{r}$

• a cusp: $(x, y, z_1), (x, y, z_2) \in C$, with $z_1 = z_2$ $z_1 = c - \sqrt{r}, z_2 = c + \sqrt{r}$

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C}\}$$

Singularities of $\mathcal B$ are the regular solutions of:

$$(\mathcal{S}_4) \begin{cases} \frac{1}{2}(p(x,y,c+\sqrt{r}) + p(x,y,c-\sqrt{r})) = 0\\ \frac{1}{2\sqrt{r}}(p(x,y,c+\sqrt{r}) - p(x,y,c-\sqrt{r})) = 0\\ \frac{1}{2}(p_z(x,y,c+\sqrt{r}) + p_z(x,y,c-\sqrt{r})) = 0\\ \frac{1}{2\sqrt{r}}(p_z(x,y,c+\sqrt{r}) - p_z(x,y,c-\sqrt{r})) = 0 \end{cases}$$

Enclosing C

Let (x, y) be:

• a node: $(x, y, z_1), (x, y, z_2) \in C$, with $z_1 \neq z_2$ $z_1 = c - \sqrt{r}, z_2 = c + \sqrt{r}$

• a cusp: $(x, y, z_1), (x, y, z_2) \in C$, with $z_1 = z_2$ $z_1 = c - \sqrt{r}, z_2 = c + \sqrt{r}$ Results

5/13

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C}\}$$

Singularities of $\mathcal B$ are the regular solutions of:

$$(S_4) \begin{cases} \frac{1}{2}(p(x, y, c + \sqrt{r}) + p(x, y, c - \sqrt{r})) = 0\\ \frac{1}{2\sqrt{r}}(p(x, y, c + \sqrt{r}) - p(x, y, c - \sqrt{r})) = 0\\ \frac{1}{2}(p_z(x, y, c + \sqrt{r}) + p_z(x, y, c - \sqrt{r})) = 0\\ \frac{1}{2\sqrt{r}}(p_z(x, y, c + \sqrt{r}) - p_z(x, y, c - \sqrt{r})) = 0 \end{cases}$$

- equations of (\mathcal{S}_4) are polynomials
- 4 equations in 4 unknowns

Results 5/13

- $F: \mathbb{R}^n \to \mathbb{R}^n$, F polynomial,
 - find zeros of F: find $\{X \in \mathbb{R}^n | F(X) = 0\}$

- $F: \mathbb{R}^n \to \mathbb{R}^n$, F polynomial,
 - find zeros of F: find $\{X \in \mathbb{R}^n | F(X) = 0\} \rightsquigarrow \{X \in \mathbb{R}^n | \|F(X)\| \le \epsilon\}$

- $F: \mathbb{R}^n o \mathbb{R}^n$, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n
 - find zeros of F: find $\{X \in \mathbb{R}^n | F(X) = 0\}$
 - Isolate zeros of F in boxes $\{X_1, \ldots, X_n\}$ such that
 - each \mathbf{X}_k contains a unique zero of F
 - each zero of F in \mathbf{X}_0 is in a unique box \mathbf{X}_k

 $F: \mathbb{R}^n \to \mathbb{R}^n$, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n

Interval Arithmetic: $\mathbf{x} \subset \mathbb{R}$, $\mathbf{X} \subset \mathbb{R}^n$

• multi-dimensional extension of interval : box $\mathbf{X} \subset \mathbb{R}^n$

$$\mathbf{X} = \mathbf{x}_1 \times \ldots \times \mathbf{x}_n = [l(x_1), r(x_1)] \times \ldots \times [l(x_n), r(x_n)]$$

[Neu90] Arnold Neumaier. Interval methods for systems of equations, volume 37. Cambridge university press, 1990.

 $F: \mathbb{R}^n o \mathbb{R}^n$, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n

Interval Arithmetic: $\mathbf{x} \subset \mathbb{R}$, $\mathbf{X} \subset \mathbb{R}^n$

- multi-dimensional extension of interval : box $\mathbf{X} \subset \mathbb{R}^n$
- interval arithmetic operators

 $\mathbf{x} = [l(x), r(x)], \mathbf{y} = [l(y), r(y)], \mathbf{x} + \mathbf{y} = [l(x) + l(y), r(x) + r(y)]$

[Neu90] Arnold Neumaier. Interval methods for systems of equations, volume 37. Cambridge university press, 1990.

 $F: \mathbb{R}^n o \mathbb{R}^n$, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n

Interval Arithmetic: $\mathbf{x} \subset \mathbb{R}$, $\mathbf{X} \subset \mathbb{R}^n$, $F(\mathbf{X}) \supseteq \{F(X) | X \in \mathbf{X}\}$

- multi-dimensional extension of interval : box $\mathbf{X} \subset \mathbb{R}^n$
- interval arithmetic operators
- interval evaluation of $F : \mathbb{R}^n \to \mathbb{R}^n : F(\mathbf{X}) \supseteq \{F(X) | X \in \mathbf{X}\}$

[Neu90] Arnold Neumaier. Interval methods for systems of equations, volume 37. Cambridge university press, 1990.

 $F: \mathbb{R}^n \to \mathbb{R}^n$, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n

Interval Arithmetic: $\mathbf{x} \subset \mathbb{R}$, $\mathbf{X} \subset \mathbb{R}^n$, $F(\mathbf{X}) \supseteq \{F(X) | X \in \mathbf{X}\}$

Krawczik criterion: $K_F : \mathbf{X} \subset \mathbb{R}^n \mapsto K_F(\mathbf{X}) \subset \mathbb{R}^n$ $K_F(\mathbf{X}) \subset Int(\mathbf{X}) \Rightarrow K_F(\mathbf{X})$ contains a unique zero of F consequence of the Brouwer fixed point theorem.

 $F: \mathbb{R}^n o \mathbb{R}^n$, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n

Interval Arithmetic: $\mathbf{x} \subset \mathbb{R}$, $\mathbf{X} \subset \mathbb{R}^n$, $F(\mathbf{X}) \supseteq \{F(X) | X \in \mathbf{X}\}$

Krawczik criterion: $K_F : \mathbf{X} \subset \mathbb{R}^n \mapsto K_F(\mathbf{X}) \subset \mathbb{R}^n$

Subdivision method: **Input:** $F : \mathbb{R}^n \to \mathbb{R}^n$, **X**₀ box of \mathbb{R}^n **Output:** A list R of boxes containing solutions in X_0 of F = 0 $L := \{X_0\}$ Repeat: $\mathbf{X} := L.pop$ If $0 \in F(\mathbf{X})$ then If $K_F(\mathbf{X}) \subset Int(\mathbf{X})$ then insert **X** in RElse If $K_F(\mathbf{X}) \cap \mathbf{X} \neq \emptyset$ then bisect **X** and insert its sub-boxes in IEnd if End if Until $I = \emptyset$ Return R

 $F: \mathbb{R}^n o \mathbb{R}^n$, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n

Interval Arithmetic: $\mathbf{x} \subset \mathbb{R}$, $\mathbf{X} \subset \mathbb{R}^n$, $F(\mathbf{X}) \supseteq \{F(X) | X \in \mathbf{X}\}$

Krawczik criterion: $K_F : \mathbf{X} \subset \mathbb{R}^n \mapsto K_F(\mathbf{X}) \subset \mathbb{R}^n$

Subdivision method:

- terminates with a correct result when
 - F = 0 has only regular solutions,
 - working at arbitrary precision.
- can be extended to unbounded initial box X_0
- its cost grows exponentially with n

[Neu90] Arnold Neumaier.

Interval methods for systems of equations, volume 37.

Cambridge university press, 1990.

Certified numerical isolation of singularities

Datas: Random dense polynomials of degree d, bit-size 8

Subdivision solver: home made in C++, with boost interval library

- evaluation of polynomials with horner scheme $\qquad \rightarrow$ quick
- evaluation of polynomials at order 2 $\qquad \rightarrow {\rm sharp}$

Numerical results: Subdivision solving within $[-1,1] \times [-1,1]$

	Sub-resultant system \mathcal{S}_2	Ball system \mathcal{S}_4
d	t	t
5	0.05	24.8
6	0.50	8.40
7	4.44	43.8
8	37.9	70.2
9	23.1	45.6

means on 5 examples of sequential times in seconds on a Intel(R) Xeon(R) CPU L5640 @ 2.27GHz machine.

Enclose C: find a sequence $\{\mathbf{C}_k\}_{1 \leq k \leq l}$ such that

- $\mathcal{C} \subset \bigcup_k \mathbf{C}_k$,
- in each C_k , $C \cap C_k$ is diffeomorphic to a close segment,
- each \mathbf{C}_k has width less than η .

	Isolating singularities	Enclosing C	Results
Motivations			8/ 13

Enclose C: find a sequence $\{\mathbf{C}_k\}_{1 \le k \le l}$ $\mathbf{C}_k = (\mathbf{x}_k, \mathbf{y}_k, \mathbf{z}_k)$ \rightarrow Enclose \mathcal{B} : each $B \in \mathcal{B}$ is in a $\mathbf{B}_k = \pi_{(\mathbf{x}, \mathbf{y})}(\mathbf{C}_k)$

	Isolating singularities	Enclosing C	Results
Motivations			8/ 13

Enclose C: find a sequence $\{\mathbf{C}_k\}_{1 \leq k \leq l}$

 \rightarrow Enclose \mathcal{B} : each $B \in \mathcal{B}$ is in a $\mathbf{B}_k = \pi_{(x,y)}(\mathbf{C}_k)$

$$\rightarrow$$
 Enclose singularities:

- each cusp is in a **B**_k
- each node is in a $\mathbf{B}_{ij} = \mathbf{B}_i \cap \mathbf{B}_j$

 $\mathbf{C}_k = (\mathbf{x}_k, \mathbf{y}_k, \mathbf{z}_k)$

 $\mathbf{B}_{k} = (\mathbf{x}_{k}, \mathbf{y}_{k})$

	Isolating singularities	Enclosing C	Results
Motivations			8/13

Enclose C: find a sequence $\{C_k\}_{1 \le k \le l}$ $C_k = (\mathbf{x}_k, \mathbf{y}_k, \mathbf{z}_k)$ \rightarrow Enclose \mathcal{B} : each $B \in \mathcal{B}$ is in a $\mathbf{B}_k = \pi_{(x,y)}(\mathbf{C}_k)$ $\mathbf{B}_k = (\mathbf{x}_k, \mathbf{y}_k)$ \rightarrow Enclose singularities: $\mathbf{B}_k = (\mathbf{x}_k, \mathbf{y}_k)$

- each cusp is in a \mathbf{B}_k $\mathbf{D}_k = (\mathbf{x}_k, \mathbf{y}_k, \mathbf{z}_k, [0, (\frac{w(\mathbf{z}_k)}{2})^2])$
- each node is in a $\mathbf{B}_{ij} = \mathbf{B}_i \cap \mathbf{B}_j$ $\mathbf{D}_{ij} = (\mathbf{x}_{ij}, \mathbf{y}_{ij}, \frac{(\mathbf{z}_i + \mathbf{z}_j)}{2}, [0, (\frac{(\mathbf{z}_i \mathbf{z}_j)}{2})^2])$

 \rightarrow Enclose solutions of the ball system:

Solutions of the ball system are in $\bigcup_k \mathbf{D}_k \cup \bigcup_{i,j} \mathbf{D}_{ij}$

Certified numerical tools: path tracker

 $\begin{aligned} F: \mathbb{R}^n &\to \mathbb{R}^{n-1}, \ \mathbf{X}_0 \text{ a box of } \mathbb{R}^n \\ \mathcal{X} &= \{X \in \mathbf{X}_0 | F(X) = 0\} \text{ is a smooth curve of } \mathbb{R}^n \\ \mathcal{X}^1, \dots, \mathcal{X}^m \text{: connected components of } \mathcal{X} \end{aligned}$

Results

9/13

Enclosing C

Certified numerical tools: path tracker

 $\begin{aligned} F: \mathbb{R}^n &\to \mathbb{R}^{n-1}, \ \mathbf{X}_0 \text{ a box of } \mathbb{R}^n \\ \mathcal{X} &= \{X \in \mathbf{X}_0 | F(X) = 0\} \text{ is a smooth curve of } \mathbb{R}^n \\ \mathcal{X}^1, \dots, \mathcal{X}^m \text{: connected components of } \mathcal{X} \end{aligned}$

Certified path-tracker:

Input:
$$F : \mathbb{R}^n \to \mathbb{R}^{n-1}$$
, X_0 box of \mathbb{R}^n , $\eta \in \mathbb{R}^+_*$
An initial box $X \in \mathcal{X}^i$

Output: a sequence of boxes $\{\mathbf{X}_k\}_{1 \leq k \leq l}$ enclosing \mathcal{X}^i .

Certified numerical tools: path tracker

 $\begin{aligned} F: \mathbb{R}^n &\to \mathbb{R}^{n-1}, \ \mathbf{X}_0 \text{ a box of } \mathbb{R}^n \\ \mathcal{X} &= \{X \in \mathbf{X}_0 | F(X) = 0\} \text{ is a smooth curve of } \mathbb{R}^n \\ \mathcal{X}^1, \dots, \mathcal{X}^m \text{: connected components of } \mathcal{X} \end{aligned}$

Certified path-tracker:

Input:
$$F : \mathbb{R}^n \to \mathbb{R}^{n-1}$$
, X_0 box of \mathbb{R}^n , $\eta \in \mathbb{R}^+_*$
An initial box $\mathbf{X} \in \mathcal{X}^i$

Output: a sequence of boxes $\{\mathbf{X}_k\}_{1 \le k \le l}$ enclosing \mathcal{X}^i .

Certified numerical tools: path tracker

[MGGJ13] Benjamin Martin, Alexandre Goldsztejn, Laurent Granvilliers, and Christophe Jermann. Certified parallelotope continuation for one-manifolds. SIAM Journal on Numerical Analysis, 51(6):3373–3401, 2013.

Introduction	Isolating singularities	Enclosing C	Results
Enclosing C			10/ 13

Enclosing C

 $F : \mathbb{R}^3 \to \mathbb{R}^2$, \mathbf{B}_0 a box of \mathbb{R}^2 $\mathcal{C} = \{ C \in \mathbf{B}_0 \times \mathbb{R} | F(X) = 0 \}$ is a smooth curve of \mathbb{R}^3 $\mathcal{C}^1, \dots, \mathcal{C}^m$: connected components of \mathcal{C}

Assumption (A3): C is compact over **B**₀ (A3) holds for generic polynomials p, q

Finding one point on each connected component

Enclosing C

Assumption (A3): C is compact over B_0

Lemma: If (A3) holds, C^k is

- either diffeomorphic to [0,1]
 - \Rightarrow has 2 intersections with $\partial B_0 \times \mathbb{R}$
- or diffeomorphic to a circle

 \Rightarrow has at least two x-critical points

Results

11/13

	Isolating singularities	Enclosing C	Results
Enclosing C			11/13
Finding one	point on each conne	cted component	
Assumption	(A3): C is compact over B	$\mathcal{C} \cap (\partial \mathbf{B}_0 imes \mathbb{R})$ are the of the 4 systems:	e solutions
Lemma: If • either o \Rightarrow has • or diffe \Rightarrow has	(A3) holds, C^k is diffeomorphic to $[0, 1]$ 2 intersections with $\partial \mathbf{B}_0 \times$ omorphic to a circle at least two <i>x</i> -critical point	$\begin{cases} p(x = a, y, z) = 0\\ q(x = a, y, z) = 0 \end{cases}$ $\begin{cases} p(x, y = b, z) = 0\\ q(x, y = b, z) = 0 \end{cases}$ $\begin{cases} where \ a \in \{x_{inf}, x_{sup}\}\\ b \in \{y_{inf}, y_{sup}\} \end{cases}$,

the state

 y_{sup} y_{sup} y_{inf}

 x_{inf}

Enclosing C

Finding one point on each connected component

Assumption (A3): C is compact over B_0

Lemma: If (A3) holds, C^k is

- either diffeomorphic to $\left[0,1\right]$
 - \Rightarrow has 2 intersections with $\partial \boldsymbol{B}_0 \times \mathbb{R}$
- or diffeomorphic to a circle

 \Rightarrow has at least two *x*-critical points

Finding one point on each connected component

Assumption (A3): C is compact over B_0

Lemma: If (A3) holds, C^k is

- either diffeomorphic to [0, 1] \Rightarrow has 2 intersections with $\partial B_0 \times \mathbb{R}$
- or diffeomorphic to a circle
 - \Rightarrow has at least two x-critical points

x-critical points of \mathcal{C} are the solutions of the system:

$$\begin{cases} p(x, y, z) = 0 \\ q(x, y, z) = 0 \\ p_y \quad p_z \\ (x, y, z) = 0 \end{cases}$$

$$\begin{vmatrix} p_y & p_z \\ q_y & q_z \end{vmatrix} (x, y, z) = 0$$

Certified numerical isolation of singularities

Path tracker: prototype in python/cython

Numerical results: solving within $[-1,1] \times [-1,1]$

	Sub-resultant system \mathcal{S}_2	Ball system \mathcal{S}_4	\mathcal{S}_4 with curve tracking
d	t	t	t
5	0.05	24.8	1.25
6	0.50	8.40	2.36
7	4.44	43.8	4.13
8	37.9	70.2	5.91
9	23.1	45.6	5.30

means on 5 examples of sequential times in seconds on a Intel(R) Xeon(R) CPU L5640 @ 2.27GHz machine.

Perspectives

- Using the enclosure of ${\mathcal C}$ to recover the topology of ${\mathcal B}$
- Projections of curves of \mathbb{R}^n , with n > 3

Questions?