Metric graph model of fibrous material

Pierre Gueth

Laboratoire d’InfoRmatique en Image et Systèmes d’information
LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/École Centrale de Lyon
http://liris.cnrs.fr

ANR-11-IDEX-0007-02 PALSE/2013/21
Fibrous materials

Appear in many fields
- Galaxy superclusters
- Reinforced concrete
- Internal bone structure
- Catalytic foam
Fibrous materials

Appear in many fields
- Galaxy superclusters
- Reinforced concrete
- Internal bone structure
- Catalytic foam

- Gas/gas or gas/solid reactions
- Various materials
 - Metal (Cu, Al)
 - Plastic (Polyurethane)
- Large stiffness to mass ratio
- High surface to volume ratio

Thermal bench (LGPC)
see posters P-70 and P-50
Catalytic foam

- Non repeatable manufacturing process
- Internal inhomogeneities
- Complex non planar structures
- Multiple scales
Metric graph model

- Fibrous material properties
 - Topology: cells, holes and cycles
 - Geometry: lengths, areas et volumes

- Metric graph
 - Graph = nodes + edges
 - Metric graph embedding = edge lengths
 - 1D differential manifold
Manifold embedding

- Manifold = smooth curved space with boundaries and holes
- Tensorial linear operators, scalar and vector fields
- Geodesic length = shortest length inside manifold

- Foam operators projected on metric graph
- Linear PDE resolution
 - Heat flow
 - Electrical resistivity
 - Mechanical stress
Proposed toolkit

- Morphological closing
- Homotopic thinning
 - Iterative topological skeleton simplification
 - Distance map driven
 - Topology conservation / size reduction
- Discrete Exterior Calculus (DEC)
 - Modern versatile discretization scheme
 - Classical linear operators $\nabla, \Delta, \nabla \cdot$ and $\nabla \wedge$
 - Stokes theorem holds \Rightarrow unique convergent solution
 - Khalimsky space \Rightarrow trivial well conditioned discretization
- Geodesic in heat [CRANE13]
- Metric graph reconstruction [AANJANEYA12]
Mathematical morphology

- Close hollow tube
- Noise reduction after thresholding

Original Dilation Erosion

Closing = Erosion \circ Dilation Opening = Dilation \circ Erosion
Mathematical morphology

- Close hollow tube
- Noise reduction after thresholding

Original

Dilation

Erosion

Closing = Erosion \circ Dilation

Opening = Dilation \circ Erosion
Mathematical morphology

- Close hollow tube
- Noise reduction after thresholding
Homotopic thinning

Size reduction with topology conservation

- Iterative erosion process
- No hole filling or closing
- Non unique solution

Local simplicity test \Rightarrow efficient (LUT)
Distance weighed priority queue \Rightarrow keep skeleton centered
May be geometrically inaccurate
Continuous Riemannian manifold

- Smooth curved space M with boundary ∂M
- Points p, q
- Coordinates system $x^1, x^2, ...$
- 0-form \equiv scalar field
- 1-form \equiv vector field $\in T_p M$ (local tangent vector space)

Base operators
- \ast Hodge (orthogonality)
- \wedge wedge (span)
- d exterior derivative
Discrete exterior calculus (DEC)

- Cellular complex (with dual)
- 0-cells ↔ point, 1-cells ↔ edge, ...
- k-cells holds discrete k-form values
- Khalimsky space
- Convergent operators

Stokes’ theorem
\[\int_M d\omega = \int_{\partial M} \omega \]

Classical operators

- Gradient \(\nabla = d \)
- Divergence \(\nabla \cdot = \ast d \ast \)
- Curl \(\nabla \wedge = d \ast \)
- Laplacian \(\Delta = \ast d \ast d \)
Operators chain and cochain

\[f \text{ scalar field (0-form)} \]
\[\nabla f = (d_0 f)^\# \]
\[\Delta f = \nabla \cdot \nabla f = *_{2}' d_1' *_1 d_0 f \]

\[V \text{ vector field (1-form\#)} \]
\[\nabla \cdot V = *_{1}' d_1' \]
\[\nabla \wedge V = (*_{2}' d_1 (V)^b)^\#' \]
Linear differential equation \Rightarrow Linear algebra problem

- Discretization of forms \Rightarrow discretization of linear operators
- k-form \sim vector
- Operator \sim matrix
- Composition \sim matrix multiplication
- Induction of properties (SDP, ...)

\[\star'_{2} \]
\[d'_{1} \]
\[\star_{1} \]
\[d_{0} = \Delta \]
Geodesic in heat \cite{CRANE13}

1. Heat flow
 \[
 \frac{\partial u}{\partial t} = \Delta u
 \]

 \[t \ll 1\]

 \[u(t = 0) = u_0\]

2. \(\nabla\) normalization
 \[
 X = \frac{\nabla u}{|\nabla u|}
 \]

3. Poisson
 \[
 \Delta \phi = \nabla \cdot X
 \]

4. \(u_0 = \delta \Rightarrow\)

 \(\phi\) distance map
1. Heat flow
\[\frac{\partial u}{\partial t} = \Delta u \]
\[t \ll 1 \]
\[u(t = 0) = u_0 \]

2. \(\nabla \) normalization
\[X = \frac{\nabla u}{|\nabla u|} \]

3. Poisson
\[\Delta \phi = \nabla \cdot X \]

4. \(u_0 = \delta \Rightarrow \)
\(\phi \) distance map
Geodesic in heat \textbf{[CRANE13]}

1. Heat flow
\[\frac{\partial u}{\partial t} = \Delta u \]
t \ll 1
\[u(t = 0) = u_0 \]

2. \nabla normalization
\[X = \frac{\nabla u}{|\nabla u|} \]

3. Poisson
\[\Delta \phi = \nabla \cdot X \]

4. \[u_0 = \delta \Rightarrow \]
\[\phi \text{ distance map} \]
Geodesic in heat \textbf{[CRANE13]}

1. Heat flow
\[\frac{\partial u}{\partial t} = \Delta u \]
\[t \ll 1 \]
\[u(t = 0) = u_0 \]

2. \nabla normalization
\[X = \frac{\nabla u}{|\nabla u|} \]

3. Poisson
\[\Delta \phi = \nabla \cdot X \]

4. \[u_0 = \delta \Rightarrow \]
\[\phi \text{ distance map} \]
1. Heat flow
\[\frac{\partial u}{\partial t} = \Delta u \]
\[t \ll 1 \]
\[u(t = 0) = u_0 \]

2. \(\nabla \) normalization
\[X = \frac{\nabla u}{|\nabla u|} \]

3. Poisson
\[\Delta \phi = \nabla \cdot X \]

4. \(u_0 = \delta \Rightarrow \phi \) distance map
Geodesic in heat \([\text{CRANE}13]\)

1. Heat flow
\[\frac{\partial u}{\partial t} = \Delta u \]
\[t \ll 1 \]
\[u(t = 0) = u_0 \]

2. \(\nabla\) normalization
\[X = \frac{\nabla u}{|\nabla u|} \]

3. Poisson
\[\Delta \phi = \nabla \cdot X \]

4. \(u_0 = \delta \Rightarrow \phi\) distance map
Geodesic in heat \[\text{[CRANE13]}\]
Geodesic in heat [CRANE13]

- Fast (prefactored linear problem)
- Precise (absolute error $\sim 0 - 3$ px)
- Triangular inequality may not hold everywhere
Degree estimation at each point of the digital

Degree = # connected components in spherical cap

Spherical caps built using geodesic distance

Constant degree cluster stands for metric graph elements

- degree = 0 ⇔ isolated node
- degree = 1 ⇔ dangling edge node
- degree = 2 ⇔ edge
- degree > 2 ⇔ node

Proof of convergence if pillars are thin enough
Metric graph reconstruction [AANJANEYA12]
Metric graph reconstruction [AANJANEYA12]
Metric graph reconstruction [AANJANEYA12]
Metric graph reconstruction [AANJANEYA12]

Degree = 1

Degree = 2

Degree = 3
Metric graph reconstruction [AANJANEYA12]
Metric graph reconstruction [AANJANEYA12]
Metric graph reconstruction [AANJANEYA12]
Metric graph reconstruction [AANJANEYA12]
Principal component analysis (PCA) on metric graphs

- **11 samples** (4 x 16 ppi, 3 x 23 ppi, 4 x 33 ppi)
- **Kirschhoff matrix = degree matrix - adjacency matrix**
- **PCA on Kirschhoff matrix eigenvalues**

Kirschhoff matrix eigenvalues

PCA projections
Convergent toolkit
- Homotopic thinning preserve topology
- Proof of convergence of metric graph reconstruction

Generic C++ implementation
- Arbitrary ambient and embedded dimensions
- DEC module included in DGtal
- Linear algebra solvers from Eigen and ARPACK
- Open source

http://dgtal.org
Typical performance: solving heat flow

IO + discretization + problem construction + factorization + resolution

256^3 px 1358000 σ^0

300 s 1CPU@2.6GHz