Discrete calculus tools for image reconstruction with the Mumford-Shah functional

Marion Foare with Jacques-Olivier Lachaud and Dorin Bucur

JIG 2015, Paris

07 Octobre 2015

Theoritical results

Ambrosio-Tortorelli functional

Discrete calculus tools 000000000000

Introduction

Some theoritical results

Ambrosio-Tortorelli functional

Ambrosio-Tortorelli functional Numerical results

Discrete calculus tools

Principle Numerical results

Conclusion

Discrete calculus tools 000000000000

Introduction

Some theoritical results

Ambrosio-Tortorelli functional

Ambrosio-Tortorelli functional Numerical results

Discrete calculus tools

Principle Numerical results

Conclusion

Theoritical results

Ambrosio-Tortorelli functional 000 Discrete calculus tools

Motivations

• Smooth reconstruction : denoising, inpainting ...

Discrete calculus tools

Intuitive energy

$$\mathcal{E}(K,u) = \underbrace{\int_{\Omega \setminus K} |u - g|^2 \, \mathrm{d}x}_{\text{fidelity}} + \alpha \underbrace{\int_{\Omega \setminus K} |\nabla u|^2 \, \mathrm{d}x}_{\text{smoothing}}$$

where :

- Ω is the image domain
- g is a grayscale image
- u is an approximation of g
- *K* is the set of contours

Theoritical results

Ambrosio-Tortorelli functional 000 Discrete calculus tools

Intuitive energy

$$\mathcal{E}(K,u) = \underbrace{\int_{\Omega \setminus K} |u - g|^2 \, dx}_{\text{fidelity}} + \alpha \underbrace{\int_{\Omega \setminus K} |\nabla u|^2 \, dx}_{\text{smoothing}} \quad \iff \text{sensitive to noise}$$

where :

- Ω is the image domain
- g is a grayscale image
- *u* is an approximation of *g*
- *K* is the set of contours

Discrete calculus tools

Isotropic Mumford-Shah functional

[Mumford and Shah, 1989]

$$\mathcal{MS}(K,u) = \underbrace{\int_{\Omega \setminus K} |u - g|^2 \, \mathrm{d}x}_{\text{fidelity}} + \alpha \underbrace{\int_{\Omega \setminus K} |\nabla u|^2 \, \mathrm{d}x}_{\text{smoothing}} + \lambda \underbrace{\mathcal{H}^1(K \cap \Omega)}_{\text{length}}$$

where :

- Ω is the image domain
- g is a grayscale image $(g \in L^{\infty}(\Omega))$
- u is an approximation of g $(u \in \mathrm{H}^1(\Omega \setminus K))$
- *K* is the set of contours

Discrete calculus tools

Anisotropic Mumford-Shah functional

$$\mathcal{MS}_{\varphi}(K,u) = \int_{\Omega \setminus K} |u - g|^2 \, \mathrm{d}x + \alpha \int_{\Omega \setminus K} |\nabla u|^2 \, \mathrm{d}x + \lambda \int_{K} \varphi(v) \, \mathrm{d}\mathcal{H}^1$$

where :

- Ω is the image domain
- g is a grayscale image $(g \in L^{\infty}(\Omega))$
- u is an approximation of g $(u \in \mathrm{H}^1(\Omega \backslash K))$
- K is the set of contours
- φ is an anisotropic norm ($\varphi = ||.||_2 \Rightarrow$ isotropic case)
- v is the oriented normal

Discrete calculus tools

Different approximation methods

• Level set :

[Vese and Chan, 2002]

• Phase field :

- TV :
 - \rightarrow staircasing effects

 \longrightarrow we want a smooth reconstruction that keeps and extracts the contours

Discrete calculus tools 000000000000

Introduction

Some theoritical results

Ambrosio-Tortorelli functional

Ambrosio-Tortorelli functional Numerical results

Discrete calculus tools

Principle Numerical results

Conclusion

Discrete calculus tools 000000000000

SBV relaxation

$$\mathcal{MS}_{\varphi}(K,u) = \alpha \int_{\Omega \setminus K} |u - g|^2 dx + \int_{\Omega \setminus K} |\nabla u|^2 dx + \lambda \int_K \varphi(v) d\mathcal{H}^{n-1}$$

 \rightarrow shape optimisation problems

Discrete calculus tools for image reconstruction with the Mumford-Shah functional

, 07/10/2015

Discrete calculus tools

SBV relaxation

$$\mathcal{MS}_{\varphi}(K,u) = \alpha \int_{\Omega \setminus K} |u - g|^2 dx + \int_{\Omega \setminus K} |\nabla u|^2 dx + \lambda \int_K \varphi(v) d\mathcal{H}^{n-1}$$

 \rightarrow shape optimisation problems

Relaxation of the functional [De Giorgi et al., 1989]

$$MS_{\varphi}(u) = \alpha \int_{\Omega} |u - g|^2 dx + \int_{\Omega} |\nabla u|^2 dx + \lambda \int_{\mathcal{J}_u} \varphi(v) d\mathcal{H}^{n-1}$$

 $u \in SBV(\Omega) = \{u \in L^1(\Omega) : \nabla u \text{ is a finite Radon measure s.t. } \nabla u = D^a u + D^j u\}$

Discrete calculus tools 000000000000

Γ -convergence

Γ-convergence

Let Ω be an open subset of \mathbb{R}^N . A sequence of functions $(f_{\varepsilon})_{\varepsilon>0}$ is said to Γ -converge to a function f in $L^1(\Omega)$, and we note $f_{\varepsilon} \xrightarrow{\Gamma} f$, if for all $u \in L^1(\Omega)$,

i) for every sequence $(u_{\mathcal{E}})_{\mathcal{E}>0}$ such that $u_{\mathcal{E}}
ightarrow u$,

 $\liminf_{\varepsilon \to 0} f_{\varepsilon}(u_{\varepsilon}) \ge f(u)$

ii) there is a sequence $(u_{\mathcal{E}})_{\mathcal{E}>0}$ converging to u such that

 $\limsup_{\varepsilon \to 0} f_{\varepsilon}(u_{\varepsilon}) \leq f(u)$

Minimizers convergence

Let (u_{ε}) be a sequence of minimizers of (f_{ε}) such that $u_{\varepsilon} \xrightarrow{L^{1}(\Omega)} u$. Then u is a minimizer of f.

Discrete calculus tools 0000000000000

Introduction

Some theoritical results

Ambrosio-Tortorelli functional

Ambrosio-Tortorelli functional Numerical results

Discrete calculus tools

Principle Numerical results

Conclusion

Theoritical results 00 Ambrosio-Tortorelli Ambrosio-Tortorelli functional •00 Discrete calculus tools

Ambrosio-Tortorelli functional

$$MS_{\varphi}(u) = \alpha \int_{\Omega} |u - g|^2 dx + \int_{\Omega} |\nabla u|^2 dx + \lambda \int_{\mathcal{J}_u} \varphi(v) d\mathcal{H}^{n-1}$$

where $u \in \text{SBV}(\Omega) = \{u \in L^1(\Omega) : \nabla u \text{ is a finite Radon measure s.t.}$ $\nabla u = D^a u + D^j u\}$ Theoritical results 00 Ambrosio-Tortorelli Ambrosio-Tortorelli functional •00 Discrete calculus tools

Ambrosio-Tortorelli functional

$$MS_{\varphi}(u) = \alpha \int_{\Omega} |u - g|^2 dx + \int_{\Omega} |\nabla u|^2 dx + \lambda \int_{\mathcal{J}_u} \varphi(v) d\mathcal{H}^{n-1}$$

where $u \in \text{SBV}(\Omega) = \{u \in L^1(\Omega) : \nabla u \text{ is a finite Radon measure s.t.} \\ \nabla u = D^a u + D^j u\}$

 \rightarrow Approximation of Ambrosio and Tortorelli

Anisotropic Ambrosio-Tortorelli functional [Focardi, 2001] We define on $L^1(\Omega)$ the functionals

$$AT^{\varphi}_{\varepsilon}(u,v) = \alpha \int_{\Omega} |u-g|^2 dx + \int_{\Omega} v^2 |\nabla u|^2 dx + \lambda \int_{\Omega} \varepsilon \varphi^2 (\nabla v) + \frac{1}{\varepsilon} \frac{(1-v)^2}{4} dx$$

Then $AT^{\varphi}_{\varepsilon} \xrightarrow{\Gamma} MS_{\varphi}$.

Theoritical results 00 Ambrosio-Tortorelli Ambrosio-Tortorelli functional

Discrete calculus tools

Ambrosio-Tortorelli functional

$$AT^{\varphi}_{\varepsilon}(u,v) = \alpha \int_{\Omega} |u-g|^2 dx + \int_{\Omega} v^2 |\nabla u|^2 dx + \lambda \int_{\Omega} \varepsilon \varphi^2 (\nabla v) + \frac{1}{\varepsilon} \frac{(1-v)^2}{4} dx$$

- g a grayscale image
- u an approximation of g
- v an approximation of the set of contours

- $\triangleright v = 1$ where there is no contour, i.e. ∇u is low
- $\triangleright v$ goes to 0 when there is a contour, i.e. ∇u is high

Ambrosio-Tortorelli functional

Discrete calculus tools 000000000000

dance to contrast

Discrete calculus tools for image reconstruction with the Mumford-Shah functional

finite differences

dance to noise

Discrete calculus tools

Introduction

Some theoritical results

Ambrosio-Tortorelli functional

Ambrosio-Tortorelli functional Numerical results

Discrete calculus tools Principle

Numerical results

Conclusion

Ambrosio-Tortorelli functional 000 Discrete calculus tools

Principle

$$AT^{\varphi}_{\varepsilon}(u,v) = \alpha \int_{\Omega} |u-g|^2 dx + \int_{\Omega} v^2 |\nabla u|^2 dx + \lambda \int_{\Omega} \varepsilon \varphi^2 (\nabla v) + \frac{1}{\varepsilon} \frac{(1-v)^2}{4} dx$$

We define :

- u,g:0-form $\to \mathbb{R}$ on the vertices s_i
- v: 1-form $\rightarrow \mathbb{R}$ on the edges e_j

and :

- A is the matrix such that $\nabla u = Au$
- *B* is the matrix such that $\nabla v = Bv$ [Grady and Polimeni, 2010]

Ambrosio-Tortorelli functional

Discrete calculus tools

Discrete $AT_{\mathcal{E}}^{\varphi}$

$$AT^{\varphi}_{\varepsilon}(u,v) = \alpha \int_{\Omega} |u-g|^2 dx + \int_{\Omega} v^2 |\nabla u|^2 dx + \lambda \int_{\Omega} \varepsilon \varphi^2 (\nabla v) + \frac{1}{\varepsilon} \frac{(1-v)^2}{4} dx$$

•
$$\alpha \int_{\Omega} (u-g)^2 \rightarrow \alpha (u-g)^T (u-g)$$

• $\int_{\Omega} v^2 |\nabla u|^2 \rightarrow v^T v (Au)^T (Au) = (Au)^T \operatorname{diag}(v)^2 (Au)^T$
• $\lambda \varepsilon \int_{\Omega} \varphi^2 (\nabla v) \rightarrow \lambda \varepsilon v^T B^T B v$ (isotropic case)
• $\frac{\lambda}{4\varepsilon} \int_{\Omega} (1-v)^2 \rightarrow \frac{\lambda}{4\varepsilon} (1-v)^T (1-v)$

We have :

$$E_{AT}(u,v) = \alpha(u-g)^T(u-g) + (Au)^T \operatorname{diag}(v)^2(Au) + \lambda \varepsilon v^T B^T Bv + \frac{\lambda}{4\varepsilon}(1-v)^T(1-v)$$

Ambrosio-Tortorelli functional

Discrete calculus tools

Gradients and exterior derivatives

+

Ambrosio-Tortorelli functional 000 Discrete calculus tools

Metric

- input image of size $N \times N$, $h = \frac{1}{N}$
- G_i is the weight matrix on *i*-forms

Then

$$\nabla u = G_0 A G_1^{-1} A u$$

$$\nabla v = (G_0 A G_1^{-1} A + G_1 B G_2^{-1} B) v$$

[Grady and Polimeni, 2010]

Ambrosio-Tortorelli functional 000 Discrete calculus tools

Metric

- input image of size $N \times N$, $h = \frac{1}{N}$
- G_i is the weight matrix on *i*-forms

Then

$$\begin{aligned} \nabla u &= G_0 A G_1^{-1} A u \\ \nabla v &= (G_0 A G_1^{-1} A + G_1 B G_2^{-1} B) v \end{aligned}$$

[Grady and Polimeni, 2010] As we want $\alpha \int_{\Omega} (u-g)^2 dx = \text{cst in } [0,1]^2$, we choose $G_0 = h^2 Id$, $G_1 = hId$, and $G_2 = Id$.

Ambrosio-Tortorelli functional

Discrete calculus tools

Metric

- input image of size $N \times N$, $h = \frac{1}{N}$
- G_i is the weight matrix on *i*-forms

Then

$$\begin{aligned} \nabla u &= G_0 A G_1^{-1} A u \\ \nabla v &= (G_0 A G_1^{-1} A + G_1 B G_2^{-1} B) v \end{aligned}$$

[Grady and Polimeni, 2010] As we want $\alpha \int_{\Omega} (u-g)^2 dx = \text{cst in } [0,1]^2$, we choose $G_0 = h^2 Id$, $G_1 = hId$, and $G_2 = Id$.

Finally :

$$E_{AT}(u,v) = \alpha h^2 (u-g)^T (u-g) + h(Au)^T \operatorname{diag}(v)^2 (Au) + \lambda \varepsilon h v^T B^T B v + \frac{\lambda h}{4\varepsilon} (1-v)^T (1-v)$$

Ambrosio-Tortorelli functional 000 Discrete calculus tools

First test

- Size : 64×64
- Noise : 0.2
- $\alpha = 8$

Ambrosio-Tortorelli functional

Discrete calculus tools

 $\lambda = 0.0781$ $\lambda = 0.0097$ $\lambda = 0.0048$ $\lambda = 0.0034$ $\lambda = 0.0276$ $\lambda = 0.0024$ $\lambda = 0.0017$ $\lambda = 0.00006$ $\lambda = 0.00015$ $\lambda = 0.00007$

Discrete calculus tools

Ambrosio-Tortorelli functional 000 Discrete calculus tools

Optimum

Discrete calculus tools for image reconstruction with the Mumford-Shah functional

, 07/10/2015

Ambrosio-Tortorelli functional 000

Discrete calculus tools

Ambrosio-Tortorelli functional 000

Discrete calculus tools

Ambrosio-Tortorelli functional

Discrete calculus tools

Discrete calculus tools 000000000000

Introduction

Some theoritical results

Ambrosio-Tortorelli functional

Ambrosio-Tortorelli functional Numerical results

Discrete calculus tools

Principle Numerical results

Conclusion

Discrete calculus tools 000000000000

Conclusion

- Continue with discrete calculus tools
 - ▷ what about the anisotropic case ?

Discrete calculus tools 000000000000

Conclusion

- Continue with discrete calculus tools
 - ▷ what about the anisotropic case ?
- Other applications :
 - Inpainting
 - Compression

Ambrosio-Tortorelli functional

Discrete calculus tools 000000000000

Références

- Bucur, D. and Luckhaus, S. (2014). Monotonicity formula and regularity for general free discontinuity problems. Arch. Ration. Mech. Anal. 211 (2014) pp. 489–511.
 - De Giorgi, E., Carriero, M., and Leaci, A. (1989). Existence theorem for a minimum problem with free discontinuity set. Archive for Rational Mechanics and Analysis, 108, pp. 195–218.
- Focardi, M. (2001). On the variational approximation of free-discontinuity problems in the vectorial case. World Scientific, Mathematical Models and Methods in Applied Sciences, Vol. 11, No. 4, pp. 663–684.
- Grady, L. J. and Polimeni, J. (2010). Discrete calculus: Applied analysis on graphs for computational science. Springer Science & Business Media.
- Mumford, D. and Shah, J. (1989). Optimal Approximation by piecewise smooth functions and associated variational problems. Communications on pure and applied mathematics, Vol. 42, pp. 577–685.
- Vese, L. A. and Chan, T. F. (2002). A multiphase level set framework for image segmentation using the mumford and shah model. International journal of computer vision, 50(3):271–293.

Discrete calculus tools for image reconstruction with the Mumford-Shah functional

, 07/10/2015

Theoritical results

Ambrosio-Tortorelli functional 000 Discrete calculus tools 000000000000 Theoritical results

Ambrosio-Tortorelli functional

Discrete calculus tools 000000000000

Espace BV
Sauts de <i>u</i>
Decomposition du gradient
Espace SBV
Propriétés de Gamma-convergence
Formule de monotonie
Théorème de Modica-Mortola isotrope
Théorème de Modica-Mortola anisotrope
Ambrosio-Tortorelli isotrope
Ambrosio-Tortorelli anisotrope
Exemple de construction des opérateurs bords pour une image 2×2

Discrete calculus tools

Fonction à variation bornée

Fonction à variation bornée

Soit Ω un ouvert de \mathbb{R}^n . On dit que $u \in L^1(\Omega)$ est une fonction à variation bornée sur Ω s'il existe une mesure de Borel μ (i.e. μ est une forme linéaire et continue sur $C^0(\mathbb{R}^n) = \{f : \mathbb{R}^n \to \mathbb{C} : \lim_{x \to \infty} f(x) = 0\}$) telle que

$$-\int_{\Omega} u \operatorname{div} \varphi \, dx = \int_{\Omega} \varphi \cdot \, \mathrm{d} \mu \; \forall \varphi \in C_c^{\infty}(\Omega, \mathbb{R}^n)$$

On définit alors la variation totale de $u \operatorname{sur} \Omega$ par

$$|Du|(\Omega) = \sup_{\|\varphi\|_{\infty} \le 1} \int_{\Omega} u \operatorname{div} \varphi \, dx$$

Et on note $BV(\Omega)$ l'espace des fonctions à variation totale bornée sur Ω .

Discrete calculus tools 000000000000

Ensemble des sauts

Ensemble des sauts

Soit $u: \mathbb{R}^n \to \mathbb{R}$ une fonction mesurable. On définit la densité d'un point x par rapport à un ensemble mesurable E par

$$D(x,F) = \lim_{\rho \to 0} \frac{|E \cap \mathcal{B}_{\rho}(x)|}{|\mathcal{B}_{\rho}(x)|} = \delta \in [0,1],$$

quand cette limite existe.

Et on pose les limites approximatives (quand elles existent)

$$u^+(x) := \inf\{t \in \mathbb{R} : D(x, \{u > t\}) = 0\}$$

$$u^-(x) := \sup\{t \in \mathbb{R} : D(x, \{u < t\}) = 0\}$$

Par définition, l'ensemble des sauts de u est l'ensemble

$$\mathcal{J}_u := \{ x \in \mathbb{R}^n : u^+(x) < u^-(x) \}$$

Discrete calculus tools

Décomposition du gradient

Décomposition du gradient

Soit $u \in BV(\mathbb{R}^n)$. Le gradient Du de u se décompose comme

$$Du = D^a u + D^j u + D^c u$$

tel que pour tout ensemble borélien $B \subseteq \mathbb{R}^n$

- i) $D^a u$ est absolument continue (par rapport à la mesure de Lebesgue) et vérifie $D^a u(B) = \int_B \nabla u(x) \ dx$
- ii) $D^{j}u$ est portée par \mathcal{J}_{u} et vérifie $D^{j}u(B) = \int_{B \cap \mathcal{J}_{u}} (u^{+}(x) u^{-}(x))v(x) d\mathcal{H}^{n-1}$ où pour $x \in \mathcal{J}_{u} \mathcal{H}^{n-1} p.p., \forall t \in [u^{-}(x), u^{+}(x)], v_{u}(x) = v_{\{u > t\}}(x)$ désigne le champ de vecteurs normaux à \mathcal{J}_{u}
- iii) $D^c u$ est singulière avec la mesure de Lebesgue et s'annule sur les ensembles qui sont des réunions dénombrables de sous-ensembles de mesure \mathcal{H}^{n-1} finie.

Discrete calculus tools

Fonction spéciale à variation bornée

Fonction spéciale à variation bornée

Soit Ω un ouvert de \mathbb{R}^n . On dit que $u \in BV(\Omega)$ est une fonction spéciale à variation bornée sur Ω si $D^c u = 0$. On note $SBV(\Omega)$ l'espace des fonctions spéciales à variation bornée sur Ω .

Discrete calculus tools

Propriétés de Γ-convergence

Soit (f_{ε}) une suite qui Γ -converge vers une fonction f dans $L^1(\Omega)$.

Convergence des minimiseurs

Et soit (u_{ε}) une suite de minimiseurs de (f_{ε}) telle que $u_{\varepsilon} \xrightarrow{L^{1}(\Omega)} u$. Alors u est un minimiseur de f.

Semi-continuité inférieure

f est semi-continue inférieurement sur $L^1(\Omega)$.

Stabilité de la somme

Et soit $g : L^1(\Omega) \to [0, +\infty[$ une fonction continue. Alors $f_{\varepsilon} + g \xrightarrow{\Gamma} f + g$ dans $L^1(\Omega)$.

Discrete calculus tools for image reconstruction with the Mumford-Shah functional

, 07/10/2015

Discrete calculus tools

Formule de monotonie

Formule de monotonie [Bucur and Luckhaus, 2014]

Soit $u \in \text{SBV}(\Omega)$ un presque-quasi minimiseur d'un problème variationnel d'inconnue (K, u) en 0. Alors

$$\label{eq:rescaled_eq_states} \begin{split} \rho \mapsto E(\rho) &:= \min \left\{ \frac{\displaystyle \int_{\mathcal{B}_{\rho}(0)} |\nabla u|^2 \ \mathrm{d}x + \mathcal{H}^{N-1}(\mathcal{J}_u \cap \bar{\mathcal{B}}_{\rho}(0))}{\rho^{N-1}} \ , \ \frac{c_N \Lambda^{2-N}}{N-1} \right\} + (N-1) \frac{c_\alpha}{\alpha} \rho^\alpha \end{split}$$
 est croissante sur $[0, d_{\partial\Omega}(0)].$

Discrete calculus tools 000000000000

Théorème de Modica-Mortola isotrope

Théorème de Modica-Mortola [?]

Soit Ω un ouvert borné lipschitzien de \mathbb{R}^n . Et soient $W : \mathbb{R} \to [0, +\infty[$ une fonction s'annulant seulement en 0 et 1, et $u \in BV(\Omega)$ telle que $u \in \{0, 1\}$ *p.p.* On considère les fonctionnelles

$$P_{\varepsilon}(u) = \int_{\Omega} \left[\varepsilon \|\nabla u\|^2 + \frac{1}{\varepsilon} W(u) \right] dx$$

et

$$P(u) = C_0 |Du|(\Omega)$$

où
$$C_0 = 2 \int_0^1 \sqrt{W(s)} \, ds.$$

Alors $P_{\varepsilon} \xrightarrow{\Gamma} P$ dans $L^1(\Omega)$.

Discrete calculus tools

Théorème de Modica-Mortola anisotrope

Théorème de Modica-Mortola anisotrope [?]

Soit Ω un ouvert borné lipschitzien de \mathbb{R}^n . Soit $\varphi : \mathbb{R}^n \to [0, +\infty]$ une norme sur \mathbb{R}^n . Et soient $W : \mathbb{R} \to [0, +\infty[$ une fonction s'annulant seulement en 0 et 1, et $u \in SBV(\Omega)$ telle que $u \in \{0, 1\} p.p$. On considère les fonctions

$$P_{\varepsilon}^{\varphi}(u) = \int_{\Omega} \left[\varepsilon \varphi^2(\nabla u) + \frac{1}{\varepsilon} W(u) \right] dx$$

et

$$P_{\varphi}(u) = C_0 \int_{\mathcal{J}_u} \varphi(v) \ d\mathcal{H}^{n-1}$$

où $C_0 = 2 \int_0^1 \sqrt{W(s)} \, ds.$ Alors $P_{\varepsilon}^{\varphi} \xrightarrow{\Gamma} P_{\varphi}$ dans $L^1(\Omega)$.

Discrete calculus tools

Fonctionnelle d'Ambrosio-Tortorelli isotrope

Fonctionnelle d'Ambrosio-Tortorelli isotrope [?]

Soit Ω un ouvert borné lipschitzien de \mathbb{R}^n . Et soit $V: [0,1] \rightarrow [0,+\infty[$ une fonction s'annulant seulement en 1.

On considère les fonctionnelles définies sur $L^1(\Omega) \times L^1(\Omega)$ par

$$G_{\varepsilon}(u,v) = \int_{\Omega} \left[v^2 |\nabla u|^2 + \varepsilon \|\nabla v\|^2 + \frac{1}{\varepsilon} V(v) \right] dx \quad \text{si } u, v \in \mathbf{W}^{1,2}(\Omega) \text{ et } 0 \le v \le 1$$

et

où

$$G(u) = \int_{\Omega} |\nabla u|^2 \, dx + 4C_V \, d\mathcal{H}^{N-1}(\mathcal{J}_u) \quad \text{si } u \in \text{SBV}(\Omega) \text{ et } v = 1 \, p.p.$$

$$C_V = 2 \int_0^1 \sqrt{V(s)} \, \mathrm{d}s.$$

Alors $G_{\mathcal{E}} \xrightarrow{\Gamma} G$ dans $L^1(\Omega)$.

Discrete calculus tools

Fonctionnelle d'Ambrosio-Tortorelli anisotrope

Fonctionnelle d'Ambrosio-Tortorelli anisotrope [Focardi, 2001]

Soit Ω un ouvert borné lipschitzien de \mathbb{R}^n . Et soit $V: [0,1] \rightarrow [0,+\infty[$ une fonction s'annulant seulement en 1.

On considère les fonctionnelles définies sur $L^1(\Omega) \times L^1(\Omega)$ par

$$G_{\varepsilon}^{\varphi}(u,v) = \int_{\Omega} \left[v^2 |\nabla u|^2 + \varepsilon \varphi^2 (\nabla v) + \frac{1}{\varepsilon} V(v) \right] dx \quad \text{si } (u,v) \in \mathbf{W}^{1,2}(\Omega, \mathbb{R}^n) \times \mathbf{W}^{1,2}(\Omega)$$

et $0 \le v \le 1$

et

$$G_{\varphi}(u) = \int_{\Omega} |\nabla u|^2 \, dx + \int_{\mathcal{J}_u} \varphi(v_u) \, d\mathcal{H}^{N-1} \quad \text{si } u \in \text{SBV}(\Omega) \text{ et } v = 1 \text{ } p.p.$$

où $C_V = 2 \int_0^1 \sqrt{V(s)} \, ds.$
Alors $G_{\mathcal{E}}^{\varphi} \xrightarrow{\Gamma} G_{\varphi} \text{ dans } L^1(\Omega).$

Discrete calculus tools

Opérateurs bords

Exemple pour 4 sommets

• Matrice d'incidence des 0-cellules (nœuds) vers les 1-cellules (arêtes) :

Discrete calculus tools

Opérateurs bords

Exemple pour 4 sommets

• Matrice d'incidence des 0-cellules (nœuds) vers les 1-cellules (arêtes) :

Discrete calculus tools

Opérateurs bords

Exemple pour 4 sommets

• Matrice d'incidence des 0-cellules (nœuds) vers les 1-cellules (arêtes) :

Discrete calculus tools

Opérateurs bords

Exemple pour 4 sommets

• Matrice d'incidence des 0-cellules (nœuds) vers les 1-cellules (arêtes) :

Discrete calculus tools

Opérateurs bords

Exemple pour 4 sommets

• Matrice d'incidence des 0-cellules (nœuds) vers les 1-cellules (arêtes) :

Discrete calculus tools

Opérateurs bords

Exemple pour 4 sommets

• Matrice d'incidence des 0-cellules (nœuds) vers les 1-cellules (arêtes) :

Discrete calculus tools

Opérateurs bords

Exemple pour 4 sommets

• Matrice d'incidence des 0-cellules (nœuds) vers les 1-cellules (arêtes) :

Discrete calculus tools

Opérateurs bords

Exemple pour 4 sommets

• Matrice d'incidence des 0-cellules (nœuds) vers les 1-cellules (arêtes) :

$$A = \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

• Matrice d'incidence des 1-cellules (arêtes) vers les 2-cellules (faces) :

$$B = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 \\ (& &) & f_1 \end{pmatrix}$$

Discrete calculus tools

Opérateurs bords

Exemple pour 4 sommets

• Matrice d'incidence des 0-cellules (nœuds) vers les 1-cellules (arêtes) :

$$A = \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

• Matrice d'incidence des 1-cellules (arêtes) vers les 2-cellules (faces) :

$$B = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 \\ 1 & & \end{pmatrix} f_1$$

Discrete calculus tools

Opérateurs bords

Exemple pour 4 sommets

• Matrice d'incidence des 0-cellules (nœuds) vers les 1-cellules (arêtes) :

$$A = \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

• Matrice d'incidence des 1-cellules (arêtes) vers les 2-cellules (faces) :

$$B = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 \\ 1 & -1 & \end{pmatrix} f_1$$

Discrete calculus tools

Opérateurs bords

Exemple pour 4 sommets

• Matrice d'incidence des 0-cellules (nœuds) vers les 1-cellules (arêtes) :

$$A = \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

• Matrice d'incidence des 1-cellules (arêtes) vers les 2-cellules (faces) :

$$B = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 \\ 1 & -1 & -1 \end{pmatrix} f_1$$

Discrete calculus tools

Opérateurs bords

Exemple pour 4 sommets

• Matrice d'incidence des 0-cellules (nœuds) vers les 1-cellules (arêtes) :

$$A = \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

• Matrice d'incidence des 1-cellules (arêtes) vers les 2-cellules (faces) :

$$B = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 \\ 1 & -1 & -1 & 1 \end{pmatrix} f_1$$

