Compact Geometric Structures in Graphics

Norbert Bus

October 8, 2015

OUTLINE

OUTLINE

A Compact Structure

Well-Separated Pair Decomposition

OUTLINE

A Compact Structure

Well-Separated Pair Decomposition

Global Illumination

Well-Separated Pair Decomposition

IlluminationCut

$O(n^2)$ distances

How to represent them compactly?

 \mathcal{P} : n points in \mathbb{R}^2

 $O(n^2)$ distances

How to represent them compactly?

pairs of clusters

 \mathcal{P} : n points in \mathbb{R}^2

 $O(n^2)$ distances

How to represent them compactly?

pairs of clusters

 \mathcal{P} : n points in \mathbb{R}^2

 $O(n^2)$ distances

How to represent them compactly?

pairs of clusters

 \mathcal{P} : n points in \mathbb{R}^2

 $O(n^2)$ distances

How to represent them compactly?

pairs of clusters

WSPD:

- set of pairs: $\{(Q,R)|Q,R\subseteq\mathcal{P}\}$

 \mathcal{P} : n points in \mathbb{R}^2

 $O(n^2)$ distances

How to represent them compactly?

pairs of clusters

- set of pairs: $\{(Q,R)|Q,R\subseteq\mathcal{P}\}$
- every cluster pair is well-separated

 \mathcal{P} : n points in \mathbb{R}^2

 $O(n^2)$ distances

How to represent them compactly?

pairs of clusters

- set of pairs: $\{(Q,R)|Q,R\subseteq\mathcal{P}\}$
- every cluster pair is well-separated $\max(r(Q), r(R)) < \epsilon \cdot dist(Q, R)$

 \mathcal{P} : n points in \mathbb{R}^2

 $O(n^2)$ distances

How to represent them compactly?

pairs of clusters

- set of pairs: $\{(Q,R)|Q,R\subseteq\mathcal{P}\}$
- every cluster pair is well-separated $\max(r(Q), r(R)) < \epsilon \cdot dist(Q, R)$

 \mathcal{P} : n points in \mathbb{R}^2

 $O(n^2)$ distances

How to represent them compactly?

pairs of clusters

- set of pairs: $\{(Q,R)|Q,R\subseteq\mathcal{P}\}$
- every cluster pair is well-separated $\max(r(Q), r(R)) < \epsilon \cdot dist(Q, R)$

 \mathcal{P} : n points in \mathbb{R}^2

 $O(n^2)$ distances

How to represent them compactly?

pairs of clusters

- set of pairs: $\{(Q,R)|Q,R\subseteq\mathcal{P}\}$
- every cluster pair is well-separated $\max(r(Q), r(R)) < \epsilon \cdot dist(Q, R)$
- every point pair is present in exactly one cluster pair

 \mathcal{P} : n points in \mathbb{R}^2

 $O(n^2)$ distances

How to represent them compactly?

pairs of clusters

- set of pairs: $\{(Q,R)|Q,R\subseteq\mathcal{P}\}$
- every cluster pair is well-separated $\max(r(Q), r(R)) < \epsilon \cdot dist(Q, R)$
- every point pair is present in exactly one cluster pair

 \mathcal{P} : n points in \mathbb{R}^2

 $O(n^2)$ distances

How to represent them compactly?

pairs of clusters

WSPD:

- set of pairs: $\{(Q,R)|Q,R\subseteq\mathcal{P}\}$
- every cluster pair is well-separated $\max(r(Q), r(R)) < \epsilon \cdot dist(Q, R)$
- every point pair is present in exactly one cluster pair

Theorem:

 \mathcal{P} : n points in \mathbb{R}^2

 $O(n^2)$ distances

How to represent them compactly?

pairs of clusters

WSPD:

- set of pairs: $\{(Q,R)|Q,R\subseteq\mathcal{P}\}$
- every cluster pair is well-separated $\max(r(Q), r(R)) < \epsilon \cdot dist(Q, R)$
- every point pair is present in exactly one cluster pair

Theorem: O(n) pairs are sufficient

Given: A scene description, comprised of

Given: A scene description, comprised of geometry

Given: A scene description, comprised of

geometry

materials

Given: A scene description, comprised of

geometry materials lighting

Given: A scene description, comprised of

geometry

materials

Task: Render photorealistic images

Given: A scene description, comprised of

geometry

materials

lighting

Task: Render photorealistic images

Solving the rendering equation (simple form):

$$L_o(p,\omega_o) = L_e(p,\omega_o) + \int_{\Omega} f_r(p,\omega_i,\omega_o) L_i(p,\omega_i) (\omega_i \cdot n) d\omega_i$$

[Kajiya 1986]

Many-Lights Methods

Many-Lights Methods

[Keller, SIGGRAPH 1997] Instant Radiosity

Many-Lights Methods

[Keller, SIGGRAPH 1997] Instant Radiosity

[Keller, SIGGRAPH 1997]

$$L(p,\omega) =$$

[Keller, SIGGRAPH 1997]

$$L(p,\omega) = \sum_{s \in S}$$

[Keller, SIGGRAPH 1997]

$$L(p,\omega) = \sum_{s \in S} I_s$$

[Keller, SIGGRAPH 1997]

$$L(p,\omega) = \sum_{s \in S} I_s V_s(p)$$

[Keller, SIGGRAPH 1997]

$$L(p,\omega) = \sum_{s \in S} I_s V_s(p) G_s(p)$$

[Keller, SIGGRAPH 1997]

$$L(p,\omega) = \sum_{s \in S} I_s V_s(p) G_s(p) M_s(p,\omega)$$

[Keller, SIGGRAPH 1997] Instant Radiosity

$$L(p,\omega) = \sum_{s \in S} I_s V_s(p) G_s(p) M_s(p,\omega)$$

Millions of VPLs \rightarrow Cluster lights

Clustering techniques:

Clustering techniques:

[Walter et al, SIGGRAPH 2005] Lightcuts: a Scalable Approach to Illumination

Clustering techniques:

[Walter et al, SIGGRAPH 2005] Lightcuts: a Scalable Approach to Illumination

[Walter et al, SIGGRAPH 2006] Multidimensional Lightcuts

Clustering techniques:

[Walter et al, SIGGRAPH 2005] Lightcuts: a Scalable Approach to Illumination

[Walter et al, SIGGRAPH 2006] Multidimensional Lightcuts

[Hasan et al, SIGGRAPH 2007] Matrix Row-Column Sampling for the Many-Light Problem

Clustering techniques:

```
[Walter et al, SIGGRAPH 2005] Lightcuts: a Scalable Approach to Illumination
```

[Walter et al, SIGGRAPH 2006] Multidimensional Lightcuts

[Hasan et al, SIGGRAPH 2007] Matrix Row-Column Sampling for the Many-Light Problem

[Ou et al, SIGGRAPH ASIA 2011] LightSlice: Matrix Slice Sampling for the Many-Lights Problem

Clustering techniques:

[Walter et al, SIGGRAPH 2005] Lightcuts: a Scalable Approach to Illumination
 [Walter et al, SIGGRAPH 2006] Multidimensional Lightcuts
 [Hasan et al, SIGGRAPH 2007] Matrix Row-Column Sampling for the Many-Light Problem

[Ou et al, SIGGRAPH ASIA 2011] LightSlice: Matrix Slice Sampling for the Many-Lights Problem

[Walter et al, SIGGRAPH 2012] Bidirectional Lightcuts

Clustering techniques:

```
[Walter et al, SIGGRAPH 2005] Lightcuts: a Scalable Approach to Illumination
```

[Walter et al, SIGGRAPH 2006] Multidimensional Lightcuts

[Hasan et al, SIGGRAPH 2007] Matrix Row-Column Sampling for the Many-Light Problem

[Ou et al, SIGGRAPH ASIA 2011] LightSlice: Matrix Slice Sampling for the Many-Lights Problem

[Walter et al, SIGGRAPH 2012] Bidirectional Lightcuts

Real-time techniques:

Clustering techniques:

```
[Walter et al, SIGGRAPH 2005] Lightcuts: a Scalable Approach to Illumination
```

[Walter et al, SIGGRAPH 2006] Multidimensional Lightcuts

[Hasan et al, SIGGRAPH 2007] Matrix Row-Column Sampling for the Many-Light Problem

[Ou et al, SIGGRAPH ASIA 2011] LightSlice: Matrix Slice Sampling for the Many-Lights Problem

[Walter et al, SIGGRAPH 2012] Bidirectional Lightcuts

Real-time techniques:

[Laine et al, EGSR 2007]

Incremental Instant Radiosity for Real-Time Indirect Illumination

Clustering techniques:

```
[Walter et al, SIGGRAPH 2005] Lightcuts: a Scalable Approach to Illumination
```

[Walter et al, SIGGRAPH 2006] Multidimensional Lightcuts

[Hasan et al, SIGGRAPH 2007] Matrix Row-Column Sampling for the Many-Light Problem

[Ou et al, SIGGRAPH ASIA 2011] LightSlice: Matrix Slice Sampling for the Many-Lights Problem

[Walter et al, SIGGRAPH 2012] Bidirectional Lightcuts

Real-time techniques:

[Laine et al, EGSR 2007]

Incremental Instant Radiosity for Real-Time Indirect Illumination

[Ritschel et al, SIGGRAPH ASIA 2008]

Imperfect Shadow Maps for Efficient Computation of Indirect Illumination

Clustering techniques:

```
[Walter et al, SIGGRAPH 2005] Lightcuts: a Scalable Approach to Illumination
```

[Walter et al, SIGGRAPH 2006] Multidimensional Lightcuts

[Hasan et al, SIGGRAPH 2007] Matrix Row-Column Sampling for the Many-Light Problem

[Ou et al, SIGGRAPH ASIA 2011] LightSlice: Matrix Slice Sampling for the Many-Lights Problem

[Walter et al, SIGGRAPH 2012] Bidirectional Lightcuts

Real-time techniques:

[Laine et al, EGSR 2007]

Incremental Instant Radiosity for Real-Time Indirect Illumination

[Ritschel et al, SIGGRAPH ASIA 2008]

Imperfect Shadow Maps for Efficient Computation of Indirect Illumination

[Holländer et al, EGSR 2011]

ManyLoDs: Parallel Many-View Level-of-Detail Selection for Real-Time Global Illumination

Clustering techniques:

```
[Walter et al, SIGGRAPH 2005] Lightcuts: a Scalable Approach to Illumination
```

[Walter et al, SIGGRAPH 2006] Multidimensional Lightcuts

[Hasan et al, SIGGRAPH 2007] Matrix Row-Column Sampling for the Many-Light Problem

[Ou et al, SIGGRAPH ASIA 2011] LightSlice: Matrix Slice Sampling for the Many-Lights Problem

[Walter et al, SIGGRAPH 2012] Bidirectional Lightcuts

Real-time techniques:

[Laine et al, EGSR 2007]

Incremental Instant Radiosity for Real-Time Indirect Illumination

[Ritschel et al, SIGGRAPH ASIA 2008]

Imperfect Shadow Maps for Efficient Computation of Indirect Illumination

[Holländer et al, EGSR 2011]

ManyLoDs: Parallel Many-View Level-of-Detail Selection for Real-Time Global Illumination

Clustering techniques:

```
[Walter et al, SIGGRAPH 2005] Lightcuts: a Scalable Approach to Illumination
```

[Walter et al, SIGGRAPH 2006] Multidimensional Lightcuts

[Hasan et al, SIGGRAPH 2007] Matrix Row-Column Sampling for the Many-Light Problem

[Ou et al, SIGGRAPH ASIA 2011] LightSlice: Matrix Slice Sampling for the Many-Lights Problem

[Walter et al, SIGGRAPH 2012] Bidirectional Lightcuts

Real-time techniques:

[Laine et al, EGSR 2007]

Incremental Instant Radiosity for Real-Time Indirect Illumination

[Ritschel et al, SIGGRAPH ASIA 2008]

Imperfect Shadow Maps for Efficient Computation of Indirect Illumination

[Holländer et al, EGSR 2011]

ManyLoDs: Parallel Many-View Level-of-Detail Selection for Real-Time Global Illumination

[Walter et al, SIGGRAPH 2005]

light transport matrix

light transport matrix

light tree

light tree

light tree

[Walter et al, SIGGRAPH 2005]

light transport matrix

light tree

Selecting the cut is still expensive

WSPD:

WSPD:

In a WSPD each point pair is present in exactly one cluster pair

WSPD:

In a WSPD each point pair is present in exactly one cluster pair

Clusters form a clustering for each individual point $\{Q \mid Q \subset \mathcal{P}, (Q, R) \in WSPD, p \in R\}$

WSPD:

In a WSPD each point pair is present in exactly one cluster pair

Clusters form a clustering for each individual point

$$\{Q \mid Q \subset \mathcal{P}, (Q, R) \in WSPD, p \in R\}$$

•

• •

•

lacktriangle

WSPD:

In a WSPD each point pair is present in exactly one cluster pair

$$\{Q \mid Q \subset \mathcal{P}, (Q, R) \in WSPD, p \in R\}$$

WSPD:

In a WSPD each point pair is present in exactly one cluster pair

$$\{Q \mid Q \subset \mathcal{P}, (Q, R) \in WSPD, p \in R\}$$

WSPD:

In a WSPD each point pair is present in exactly one cluster pair

$$\{Q \mid Q \subset \mathcal{P}, (Q, R) \in WSPD, p \in R\}$$

WSPD:

In a WSPD each point pair is present in exactly one cluster pair

$$\{Q \mid Q \subset \mathcal{P}, (Q, R) \in WSPD, p \in R\}$$

WSPD:

In a WSPD each point pair is present in exactly one cluster pair

$$\{Q \mid Q \subset \mathcal{P}, (Q, R) \in WSPD, p \in R\}$$

WSPD:

In a WSPD each point pair is present in exactly one cluster pair

$$\{Q \mid Q \subset \mathcal{P}, (Q, R) \in WSPD, p \in R\}$$

WSPD:

In a WSPD each point pair is present in exactly one cluster pair

Clusters form a clustering for each individual point

$$\{Q \mid Q \subset \mathcal{P}, (Q, R) \in WSPD, p \in R\}$$

Use the WSPD to store all clusterings compactly

Algorithm:

Algorithm:

Preprocessing phase

Algorithm:

Preprocessing phase

Create WSPD of VPLs – stores clusterings

Algorithm:

Preprocessing phase

Create WSPD of VPLs – stores clusterings

Adjust it to be more adapted to illumination

Algorithm:

Preprocessing phase

Create WSPD of VPLs – stores clusterings

Adjust it to be more adapted to illumination

Rendering

Algorithm:

Preprocessing phase

Create WSPD of VPLs – stores clusterings

Adjust it to be more adapted to illumination

Rendering

Pick the closest VPL and take its clustering

Algorithm:

Preprocessing phase

Create WSPD of VPLs – stores clusterings

Adjust it to be more adapted to illumination

Rendering

Pick the closest VPL and take its clustering

Only requires provably minor adjustment for each shaded point

Algorithm:

Preprocessing phase

Create WSPD of VPLs – stores clusterings

Adjust it to be more adapted to illumination

Rendering

Pick the closest VPL and take its clustering

Only requires provably minor adjustment for each shaded point

Theorem:

Let p be an arbitrary point and s be its nearest neighbor. There is only $O(\frac{1}{\epsilon^6})$ refinement needed to create a well-separated clustering for p.

System overview

Easy to integrate into existing framework

Lightcuts

WSPD

Lightcuts

WSPD

Lightcuts

Time: 515.06 sec RMSE: 0.00467

WSPD

Time: $190.27 \sec (2.7x)$

RMSE: 0.00465

Lightcuts

Time: 515.06 sec RMSE: 0.00467

WSPD

Time: $190.27 \sec (2.7x)$

RMSE: 0.00465

+ very fast rendering

Light cuts

Time: 515.06 sec RMSE: 0.00467

WSPD

Time: $190.27 \sec (2.7x)$

RMSE: 0.00465

- + very fast rendering
- long preprocessing

Lightcuts

Time: 515.06 sec RMSE: 0.00467

WSPD

Time: $190.27 \sec (2.7x)$

RMSE: 0.00465

- + very fast rendering
- long preprocessing
- diffuse only BRDF

Observe what happens over many pixels

Observe what happens over many pixels

Observe what happens over many pixels

Repeated calculations for the same clusters

Observe what happens over many pixels

Repeated calculations for the same clusters

Cluster similar shaded points

Observe what happens over many pixels

Repeated calculations for the same clusters

Cluster similar shaded points

Observe what happens over many pixels

Repeated calculations for the same clusters

Cluster similar shaded points

Instead of clustering the points use a hierarchical clustering structure

Instead of clustering the points use a hierarchical clustering structure

Instead of clustering the points use a hierarchical clustering structure

Instead of clustering the points use a hierarchical clustering structure

Instead of clustering the points use a hierarchical clustering structure

Instead of clustering the points use a hierarchical clustering structure

Instead of clustering the points use a hierarchical clustering structure

Instead of clustering the points use a hierarchical clustering structure

EFFICIENCY

Efficiency

Clustering costs (amortized)

Efficiency

Clustering costs (amortized)

Lightcuts

Illumination Cut

Lightcuts

Illumination Cut

Lightcuts

Time: 233.31 sec RMSE: 0.00591

IlluminationCut

Time: $71.83 \sec (3.3x)$

RMSE: 0.00574

Lightcuts

Illumination Cut

Lightcuts

Illumination Cut

Lightcuts

Time: 183.07 sec RMSE: 0.01033

Illumination Cut

Time: $43.04 \sec (4.2x)$

RMSE: 0.01256

Lightcuts

IlluminationCut

Time: 183.07 sec RMSE: 0.01033 Time: $43.04 \sec (4.2x)$

RMSE: 0.01256

+ very fast rendering

Lightcuts

IlluminationCut

Time: 183.07 sec RMSE: 0.01033 Time: $43.04 \sec (4.2x)$

RMSE: 0.01256

+ very fast rendering

+ specular BRDF

Additional benefit of group pairs:

Additional benefit of group pairs:

Additional benefit of group pairs:

Very similar illumination \rightarrow we can save shadow rays

Additional benefit of group pairs:

Very similar illumination \rightarrow we can save shadow rays

Additional benefit of group pairs:

Very similar illumination \rightarrow we can save shadow rays

Reference

Reference

IlluminationCut – Visibility sampling

IlluminationCut – Visibility sampling

+ even more fast rendering 9.6x speedup

Published source code

Published source code

Implementation

Most of the state-of-the-art many-lights methods within one framework

Lightcuts

IlluminationCut

LightSlice

Multidimensional Lightcuts

Matrix Row-Column Sampling

Global Illumination Using WSPD

Published source code

Implementation

Most of the state-of-the-art many-lights methods within one framework

Lightcuts

IlluminationCut

LightSlice

Multidimensional Lightcuts

Matrix Row-Column Sampling

Global Illumination Using WSPD

Embree – Intel®

- interactive frame rates with progressive path tracing

Thank you!